Смекни!
smekni.com

Базовый интегральный модуль неокортекса. Проблема и решение - дополнительный подход (стр. 2 из 5)

В-третьих, критерию адресных ассоциативных связей соответствует не одна, но две системы "элементарных" колонок: одна из которых - колонки на диффузный свет (эти колонки обнаружены экспериментально у всех млекопитающих), другая - колонки по ориентации (полос) - основного претендента на роль универсального модуля в зрительной коре.

С 1969г. мы исследовали конструкцию колонок на диффузный свет на примере зрительной коры мозга морской свинки, в то же время анализируя результаты исследований (по сути они оказались аналогичны) на зрительной коре белых крыс, также проводимых в НИИ НК РГУ с целью решения проблемы элементарного вероятностно-статичтического ансамбля (А.Б. Коган, О.Г. Чораян). При этом были разработаны методы с пространственным разрешением в одну миниколонку.

В 1971г. мы открыли факт полярной векторной "он-офф" организации колонок на диффузный свет.

Затем в 1978г. совместными с Л.Н. Подладчиковой и Г.Г. Бондарь был открыт факт адресной организации гетерогенных входов специфической, ассоциативной и неспецифических систем афферентов применительно к территориям отдельных колонок на диффузный свет и дана (Чебкасов) его морфологическая интерпретация, позволившая уже обосновано говорить о таких колонках как не только функциональных, но и структурных единицах зрительной коры. Подтверждение в работах А.Г. Сухова с Т.А. Лапенко факта адресной конвергенции различных афферентаций применительно к бочонковым колонкам позволило нам укрепиться в предположении (Чебкасов,1972), что мы имеем дело с универсальным структурным модулем неокортекса.

В работах Чебкасова1990-2003гг. было показано, что колонки по ориентации полос (аналоги колонок Хьюбела-Визла у высших млекопитающих) - это выходные зоны композитных полярных модулей, составленных из пары базовых "он-офф" модулей с противоположной ориентацией осей "он-офф"-диполей.

В совместных опытах с Л.Н. Подладчиковой и Г.Г. Бондарь при анализе топографии фокальных вызванных потенциалов, вызываемых стимуляцией вспышкой диффузного света, были получены первые свидетельства того, что колонки на диффузный свет с поперечным размером около 200мкм образуют объединения старшего порядка. Дальнейшие исследования с применением локального освещения и ориентированных полос позволили подтвердить сложившуюся у нас гипотезу "ворот" о роли полярной векторной "он-офф"организации колонок на диффузное освещение как конструктивного фактора, определяющего ориентационную чувствительность таких колонок и установить, что выявляемые по фокальным потенциалам макроколонки являются аналогом гиперколонок - модулей Хьюбела-Визла. В этом нашем заключении существенную роль сыграла работа Л.Н. Подладчиковой и Беляковой, показавших, что на отдельных колонках на диффузный свет конвергируют входы и от левого, и от правого глаза (база для глазодоминантых колонок). С учетом данных, полученных в нашем институте для белой крысы это позволило показать, что план строения зрительной коры мозга грызунов и приматов един.

Подробно исследовав конструкцию колонок на диффузный свет, обладающих ориентационной чувствительностью, мы с одной стороны получили решающие доказательства их полифункциональности (это было сформулировано нами уже в 1972г., а морфологами - в уже цитированной работе Богословской и Полякова - как общий принцип полифункциональности интегративных структур мозга). С другой стороны были получены данные, позволяющие рассматривать изучаемые структурно-функциональные единицы коры в качестве элементарных интегративных модулей.

При этом стало понятно, что из-за наличия как минимум двух систем модулей, необходимо уточнить термин "универсальный модуль" неокортекса до определения "базовый универсальный интегративный модуль" неокртекса.

К 1987г. мы сформулировали представление о том, что ориентационно-чувствительные колонки грызунов есть аналоги не колонок по ориентации, но "blobs".

В 1987г. мы изготовили препараты по методу Е.Н. Стадникова. Такие препараты из-за отсутствия извилин у грызунов позволяли получать тангенциальные срезы на уровне слоя Ш, включающие практически весь плащ неокортекса. Используя бинокулярный микроскоп на малых увеличениях, уже на неокрашенных препаратах, и на препаратах окрашенных на крезил-виолет и гематоксилин-эозин, мы визуально обнаружили то, что искали - группировки размером около 200мкм (за исключением аналогичных структур, но более крупных, и упорядоченных в ряды - в бочонковом поле соматосенсорной коры). Описываемые структуры выявлялись не только в проекционных зонах, включая слуховую кору, и моторной коре, но и в ассоциативных зонах (поля 5и7), а также в премоторной коре. Это давало сильный довод в пользу того, что изучаемые нами колонки в зрительной коре и те, изучаемые в нашем институте А.Г. Суховым с сотрудниками - бочонковые колонки суть частные случаи базовых универсальных модулей неокортекса. Последнее заключение усиливалось установленнием А.Г. Суховым с В.М. Дуканичем, Е.Н. Стадниковым и В.Н. Ласковым факта, что в слое IV нейроны противоположных стенок "бочонка" характеризуются противоположной дирекциональной чувствительностью. Это нам позволило сделать заключение, что и "бочонки" представляют собой полярные векторные структуры, а вместе с аналогичными данными литературы - о том, что полярная векторная организация является принципом организации базовых универсальных интегративных модулей неокортекса.

Для ориентационно-чувствительных колонок по диффузному свету нами в 1980г. было сформулировано представление, что в силу их конструкции процесс нервной интеграции не может протекать иначе, чем в виде апериодических эпизодов миллисекундной синхронизации спайков. Каждый такой эпизод - суть элементарный вероятностно-статистический нейронный ансамбль - ансамбль А.Б. Когана. Каждый такой ансамбль объединяет активность части (многие десятки и сотни) гетерогенных и полярных элементов. Это, однако, был не эргодический ансамбль О.Г. Чораяна и Сентаготаи-Эрди, но квантово-волновой. В последовательности таких ансамблей на языке временного кода содержится сообщение о результатах достигнутого в колонке уровня интеграции гетерогенных и полярных ее элементов - для иных нервных структур и к эффекторам. Сведения литературы и данные, полученные в нашем институте при изучении "бочонковых" колонок, позволяли обобщить представления о роли миллисекундной синхронизации до общего принципа функционирования интегративных структур неокортекса.

К 1990г. мы экспериментально показали, что ориентационная чувствительность колонок на диффузный свет - это не чувствительность к ориентации полосы, но чувствительность к ориентации контрастной кромки, реализуемой (в соответствии с прежними нашими представлениями) на основе структурно предопределенного асимметричного растормаживания (но не асимметричного торможения) и на основе миллисекундной синхронизации.

Тем самым, с учетом данных литературы, мы продемонстрировали обоснованность представления о том, что не колонка по ориентации полосы, но структуры, аналогичные "blobs", служат базовым элементом для миллисекундной синхронизации спайков.

Также было подтверждено предположение о композитных полярных векторных модулях (составленных из пар базовых модулей с противоположной ориентацией оси "он-офф"-диполей и соответственно "предпочитающих" противоположную ориентацию контрастных кромок) как модулях для выявления ориентации полос.

На базе полученных данных мы развили принципиально новую концепцию нервной интеграции (Чебкасов,1989-2003).

Отчетливо понимая, что ее экспериментальная база неполна, и что 2/3 млекопитающих - это грызуны, мы в 2001г. приступили к прямому выявлению "blobs" у грызунов. Для этого мы использовали те самые методы, которыми "blobs" были выявлены сначала в мозге приматов, затем - хищников, а далее - цитохромоксидазных "пэтчиз" в соматосенсорной коре грызунов, соответствующих "бочонкам, а также в слуховой коре.

Результаты этой работы перед Вами.

Методика

В отличие от "блобс" приматов, разделенных протяженными промежуточными зонами мы заранее знали (по результатам предыдущих исследований, что эти зоны значительно уже (Чебкасов,1998). Соответственно необходимо была особая точность резания при изготовлении тангенциальных препаратов слоя Ш. Здесь нам на помощь вновь пришел метод резания, разработанный Е.Н. Стадниковым. Если бы не этот метод можно было заранее ожидать тех же результатов, что получили для грызунов Хьюбел с сотрудниками, которые не смогли выявить "блобс" у грызунов. - Причина в том, что узкие промежуточные зоны между "блобс" будут выявляться на плане коры лишь тогда, когда будут ориентированы по нормали к плоскости среза. При скосе, с учетом толщины среза в 75мкм, мы неизбежно получили бы равномерное распределение окраски - промежутки между "блобс" в проекции коры оказались бы закрыты для наблюдения.

Опыты были проведены на коре мозга шести белых крыс весом около 300Г. Об активности цитохромоксидазы судили путем анализа тангенциальных срезов плаща коры мозга, приготовленных по методу Е.Н. Стадникова [Cтадников, 1986] и окрашиваемых по классической методике [Leventhal et al,1995,Marphy et al,1995], с помощью которой были выявлены цитохромоксидазные "блобс" и "пэтчис" ранее Использовались препараты фирмы ICN (USA). Фотографии срезов делались с помощью фотонасадки через микроскоп МБС-2 при увеличении 2х8.