Смекни!
smekni.com

Основные функции и компоненты ядра ОС UNIX (стр. 1 из 13)

В этой части курса мы более подробно остановимся на базовых функциях ядра ОС UNIX. Основная цель этой части - ввести слушателя курса (и читателя этого документа) в основные идеи ядра ОС UNIX, т.е. показать, чем руководствовались разработчики системы при выборе базовых проектных решений. При этом мы не стремимся излагать технические детали организации ядра, поскольку (как это обычно бывает при попытках совместного идейно-технического изложения) мы утратили бы явное различие между принципиальными и техническими решениями.

Возможно, выбор тем этой части довольно субъективен. Не исключено, что кто-то другой обратил бы большее внимание на другие вопросы, связанные с функциями ядра операционной системы. Однако подчеркнем, что мы следуем классическому представлению о функциях ядра ОС, введенному еще профессором Дейкстрой. В соответствии с этим представлением, ядро любой ОС прежде всего отвечает за управление основной памятью компьютера и виртуальной памятью выполняемых процессов, за управление процессором и планирование распределения процессорных ресурсов между совместно выполняемыми процессами, за управление внешними устройствами и, наконец, за обеспечение базовых средств синхронизации и взаимодействия процессов. Именно эти вопросы мы рассмотрим в данной части курса применительно к ОС UNIX (иногда к UNIX вообще, а иногда к UNIX System V).

Управление памятью

Основная (или как ее принято называть в отечественной литературе и документации, оперативная) память всегда была и остается до сих пор наиболее критическим ресурсом компьютеров. Если учесть, что большинство современных компьютеров обеспечивает 32-разрядную адресацию в пользовательских программах, и все большую силу набирает новое поколение 64-разрядных компьютеров, то становится понятным, что практически безнадежно рассчитывать, что когда-нибудь удастся оснастить компьютеры основной памятью такого объема, чтобы ее хватило для выполнения произвольной пользовательской программы, не говоря уже об обеспечении мультипрограммного режима, когда в основной памяти, вообще говоря, могут одновременно содержаться несколько пользовательских программ.

Поэтому всегда первичной функцией всех операционных систем (более точно, операционных систем, обеспечивающих режим мультипрограммирования) было обеспечение разделения основной памяти между конкурирующими пользовательскими процессами. Мы не будем здесь слишком сильно вдаваться в историю этого вопроса. Заметим лишь, что применявшаяся техника распространяется от статического распределения памяти (каждый процесс пользователя должен полностью поместиться в основной памяти, и система принимает к обслуживанию дополнительные пользовательские процессы до тех пор, пока все они одновременно помещаются в основной памяти), с промежуточным решением в виде "простого своппинга" (система по-прежнему располагает каждый процесс в основной памяти целиком, но иногда на основании некоторого критерия целиком сбрасывает образ некоторого процесса из основной памяти во внешнюю память и заменяет его в основной памяти образом некоторого другого процесса), до смешанных стратегий, основанных на использовании "страничной подкачки по требованию" и развитых механизмов своппинга.

Операционная система UNIX начинала свое существование с применения очень простых методов управления памятью (простой своппинг), но в современных вариантах системы для управления памятью применяется весьма изощренная техника.

Виртуальная память

Идея виртуальной памяти далеко не нова. Сейчас многие полагают, что в основе этой идеи лежит необходимость обеспечения (при поддержке операционной системы) видимости практически неограниченной (32- или 64-разрядной) адресуемой пользовательской памяти при наличии основной памяти существенно меньших размеров. Конечно, этот аспект очень важен. Но также важно понимать, что виртуальная память поддерживалась и на компьютерах с 16-разрядной адресацией, в которых объем основной памяти зачастую существенно превышал 64 Кбайта.

Вспомните хотя бы 16-разрядный компьютер PDP-11/70, к которому можно было подключить до 2 Мбайт основной памяти. Другим примером может служить выдающаяся отечественная ЭВМ БЭСМ-6, в которой при 15-разрядной адресации 6-байтовых (48-разрядных) машинных слов объем основной памяти был доведен до 256 Кбайт. Операционные системы этих компьютеров тем не менее поддерживали виртуальную память, основным смыслом которой являлось обеспечение защиты пользовательских программ одной от другой и предоставление операционной системе возможности динамически гибко перераспределять основную память между одновременно поддерживаемыми пользовательскими процессами.

Хотя известны и чисто программные реализации виртуальной памяти, это направление получило наиболее широкое развитие после получения соответствующей аппаратной поддержки. Идея аппаратной части механизма виртуальной памяти состоит в том, что адрес памяти, вырабатываемый командой, интерпретируется аппаратурой не как реальный адрес некоторого элемента основной памяти, а как некоторая структура, разные поля которой обрабатываются разным образом.

В наиболее простом и наиболее часто используемом случае страничной виртуальной памяти каждая виртуальная память (виртуальная память каждого процесса) и физическая основная память представляются состоящими из наборов блоков или страниц одинакового размера. Для удобства реализации размер страницы всегда выбирается равным числу, являющемуся степенью 2. Тогда, если общая длина виртуального адреса есть N (в последние годы это тоже всегда некоторая степень 2 - 16, 32, 64), а размер страницы есть 2M), то виртуальный адрес рассматривается как структура, состоящая из двух полей: первое поле занимает (N-M+1) разрядов адреса и задает номер страницы виртуальной памяти, второе поле занимает (M-1) разрядов и задает смещение внутри страницы до адресуемого элемента памяти (в большинстве случаев - байта). Аппаратная интерпретация виртуального адреса показана на рисунке 3.1.

Рисунок иллюстрирует механизм на концептуальном уровне, не вдаваясь в детали по поводу того, что из себя представляет и где хранится таблица страниц. Мы не будем рассматривать возможные варианты, а лишь заметим, что в большинстве современных компьютеров со страничной организацией виртуальной памяти все таблицы страниц хранятся в основной памяти, а быстрота доступа к элементам таблицы текущей виртуальной памяти достигается за счет наличия сверхбыстродействующей буферной памяти (кэша).

Для полноты изложения, но не вдаваясь в детали, заметим, что существуют две другие схемы организации виртуальной памяти: сегментная и сегментно-страничная. При сегментной организации виртуальный адрес по-прежнему состоит из двух полей - номера сегмента и смещения внутри сегмента. Отличие от страничной организации состоит в том, что сегменты виртуальной памяти могут быть разного размера. В элементе таблицы сегментов помимо физического адреса начала сегмента (если виртуальный сегмент содержится в основной памяти) содержится длина сегмента. Если размер смещения в виртуальном адресе выходит за пределы размера сегмента, возникает прерывание. Понятно, что компьютер с сегментной организацией виртуальной памяти можно использовать как компьютер со страничной организацией, если использовать сегменты одного размера.

Рис. 3.1. Схема страничной организации виртуальной памяти

При сегментно-страничной организации виртуальной памяти происходит двухуровневая трансляция виртуального адреса в физический. В этом случае виртуальный адрес состоит из трех полей: номера сегмента виртуальной памяти, номера страницы внутри сегмента и смещения внутри страницы. Соответственно, используются две таблицы отображения - таблица сегментов, связывающая номер сегмента с таблицей страниц, и отдельная таблица страниц для каждого сегмента (рисунок 3.2).

Рис. 3.2. Схема сегментно-страничной организации виртуальной памяти

Сегментно-страничная организация виртуальной памяти позволяла совместно использовать одни и те же сегменты данных и программного кода в виртуальной памяти разных задач (для каждой виртуальной памяти существовала отдельная таблица сегментов, но для совместно используемых сегментов поддерживались общие таблицы страниц).

В дальнейшем рассмотрении мы ограничимся проблемами управления страничной виртуальной памяти. С небольшими коррективами все обсуждаемые ниже методы и алгоритмы относятся и к сегментной, и сегментно-страничной организациям.

Как же достигается возможность наличия виртуальной памяти с размером, существенно превышающим размер оперативной памяти? В элементе таблицы страниц может быть установлен специальный флаг (означающий отсутствие страницы), наличие которого заставляет аппаратуру вместо нормального отображения виртуального адреса в физический прервать выполнение команды и передать управление соответствующему компоненту операционной системы. Английский термин "demand paging" (листание по требованию) достаточно точно характеризует функции, выполняемые этим компонентом. Когда программа обращается к виртуальной странице, отсутствующей в основной памяти, т.е. "требует" доступа к данным или программному коду, операционная система удовлетворяет это требование путем выделения страницы основной памяти, перемещения в нее копии страницы, находящейся во внешней памяти, и соответствующей модификации элемента таблицы страниц. После этого происходит "возврат из прерывания", и команда, по "требованию" которой выполнялись эти действия, продолжает свое выполнение.

Наиболее ответственным действием описанного процесса является выделение страницы основной памяти для удовлетворения требования доступа к отсутствующей в основной памяти виртуальной странице. Напомним, что мы рассматриваем ситуацию, когда размер каждой виртуальной памяти может существенно превосходить размер основной памяти. Это означает, что при выделении страницы основной памяти с большой вероятностью не удастся найти свободную (не приписанную к какой-либо виртуальной памяти) страницу. В этом случае операционная система должна в соответствии с заложенными в нее критериями (совокупность этих критериев принято называть "политикой замещения", а основанный на них алгоритм замещения - "алгоритмом подкачки") найти некоторую занятую страницу основной памяти, переместить в случае надобности ее содержимое во внешнюю память, должным образом модифицировать соответствующий элемент соответствующей таблицы страниц и после этого продолжить процесс удовлетворения доступа к странице.