Смекни!
smekni.com

Вероятность в биологии (стр. 4 из 6)

Представьте себе две вытянувшиеся гомологичные хромосомные нити, которые, перед тем как разойтись в разные гаметы, тесно прильнули друг к другу (каждый ген к соответствующему гену) и затем несколько раз закрутились вокруг самих себя. Это закручивание хромосом, или, иначе, взаимный перекрест, приводит к тому, что внутриклеточные силы, призванные разделить хромосомы, оттащить их друг от друга, разрывают хромосомы.

Место разрыва случайным образом меняется от одной пары перекрещенных хромосом к другой. В результате разрыва в одну гамету отправляется не целая хромосома, а взаимодополняющие друг друга части обеих гомологичных хромосом; другие части этих хромосом отправляются в другую гамету. Этот процесс показан схематически на рисунке 6.5. подчеркнем, что в момент разрыва соответствующие гены обеих хромосом (речь идет об аллелях) непосредственно контактируют друг с другом. Поэтому, где бы ни произошел разрыв, аллель из одной хромосомы отправиться в другую гамету, а аллель из хромосомы в другую гамету. Одним словом, не получиться так, чтобы в какой-то гамете не оказалось ни одного аллеля рассматриваемого гена. Все это можно представить так, как если бы «танцующие» пары хромосом перед расставанием обменялись друг с другом какими-то частями, причем обязательно соответствующими частями. В конечном счете в каждой образовавшейся гамете все равно окажется полный набор типов генов, присущий данной хромосоме. При этом произойдет случайное перекомбинирование отцовских и материнских аллелей.

В явление перекреста хромосом существенную роль играет случай. Случайно место разрыва в той или иной паре хромосом, а следовательно, случайна перекомбинация родительских аллелей.

Увеличивая поле действия случайного, явление перекреста хромосом способствует внутривидовому развитию, создавая дополнительные возможности перетасовки родительских генов. В то же время это явление как бы оберегает вид от возможных случайных генетических «посягательств» на него. Допустим, сто произошло случайное скрещивание особей двух разных видов и появились гибриды. У этих гибридов в каждой гомологической паре будут объединены хромосомы, весьма отличающиеся одна от другой по своей генной структуре (ведь эти хромосомы взяты от родителей, относящиеся к разным видам!). когда наступит время формирования половых клеток, такие хромосомы не могут вследствие существенных взаимных различий исполнить совместный «прощальный танец». В результате не смогут образовываться гаметы, а следовательно, и появятся гибриды второго поколения. Вот почему мулы (гибрид лошади и осла) не имеют потомства.

Мальчик или девочка ?

Мы уже отмечали, что обе половые хромосомы женщины одинаковы – это X-хромосомы. Половые хромосомы мужчины, напротив, различны – X-хромосома и Y-хромосома. Примерно половина мужских гамет несет X-хромосому, другая половина – Y-хромосому. Если с женской гаметой соединяется X-гамета мужчины, то образуется XX-зигота, из нее разовьется девочка. Если же с женской гаметой соединяется Y-гамета мужчины, то образуется XY-зигота, из нее разовьется мальчик.

Мутация.

Мы рассмотрели случайные изменения генетических программ, происходящих при скрещивании в результате комбинирования родительских генов. Все эти изменения ограниченны имеющимся фондом генов. Новые гены при этом не создаются. Вместе с тем наблюдаются случайные наследственные изменения, не связанные с комбинированием генов. Они обусловлены действием внешней среды на генную структуру хромосом, а также случайными нарушениями в биологическом механизме, обеспечивающем сохранение генетической информации при делении соматических клеток и при мейозе. Эти наследственные изменения называют мутациями.

Некоторые проявления мутации.

Существует серьезное заболевание, проявляющееся в том, что кровь человека утрачивает способность к свертыванию. Это заболевание называют гемофилией. Оно передается по наследству и встречается только у мужчин. Выяснено, что гемофилия – следствие мутации одного из генов, находящихся в половой X-хромосоме. Поскольку у женщины две X-хромосомы, то смутировавшему гену в одной из них противостоит нормальный ген в другой. Смутировавший ген рецессивен. Он подавляется нормальным геном. Поэтому женщины и не заболевают гемофилией. Иное дело мужчины. Набор половых хромосом мужчины состоит из двух разных хромосом – X-хромосомы и Y-хромосомы. В данном случае нет парного нормального гена, который бы мог подавить ген гемофилии. В результате мужчина, получивший от фенотипически здоровой матери X-хромосому со смутировавшим геном, заболевает гемофилией.

К счастью, чаще мутации проявляются более безобидно. Коротко-палая кисть, шестой палец, сердце справа – относительно редкие проявления мутации. Более часто наблюдаются такие мутации, как, например, разный цвет глаз, значительное облысение (включая форму лысины), необычная окраска шерсти у животных и т.д. относительно часто встречаются мутации у растений. Они выражаются весьма разнообразно, затрагивая формы ствола, листьев, цветков.

Причины появления мутаций.

Та или иная мутация – довольно редкое явление. Например, вероятность того, что взятая наугад гамета с X-хромосомой будет содержать мутацию, связанную с гемофилией, равна всего 10 –5. Другие мутации происходят еще реже – в среднем с вероятностью примерно 10-6. Надо, однако, принимать во внимание многообразие мутаций. Они могут затрагивать самые разные гены из огромного их числа, приходящегося на каждую гамету. Надо учитывать также, что мутации передаются по наследству, они накапливаются. В итоге мутации оказываются не такими уж редкими событиями. Подсчитано, что примерно среди каждых десяти гамет человека можно обнаружить гамету, несущую какую-нибудь мутацию.

Появление конкретной мутации – случайное событие. Но у этого события есть объективные причины. Организм развивается из зиготы в результате многократных делений клеток. Процесс деления клетки начинается с того, что в ее ядре происходит самоудвоение (редупликация) хромосом и, следовательно, молекул ДНК. Каждая молекула ДНК как бы воссоздает свою точную копию – с таким же набором генов. Сложный процесс редупликации молекулы ДНК не обходиться без случайных нарушений. Как известно, генетическая информация записывается в ДНК сверхэкономно – на молекулярном уровне. При копировании информации возможны различного рода «опечатки», обусловленные тепловым движением молекул вещества. «Опечатки» возникают вследствие неизбежных флуктуаций в поведении частиц вещества. Например, в молекуле ДНК во время ее самоудвоения может случайно возрасти количество ионов водорода вблизи какого-нибудь азотистого основания. Такая флуктуация может привести к отщеплению данного основания от ДНК, т.е. к нарушению структуры соответствующего гена.

У всех видов, размножающихся половым путем, потомству передаются лишь те мутации, которые затрагивают половые клетки. Поэтому весьма существенны те случайные нарушения, которые происходят при формировании половых клеток, в мейозе. Эти нарушения могут затрагивать не отдельные гены, но и хромосомы в целом. Отдельные гаметы могут получить хромосому с искаженной генной структурой или вообще недополучить какую-то хромосому. Возможно также образование гамет с лишними хромосомами.

Тепловое движение молекул вещества – не единственная причина появления мутаций. Исследования выявили целый ряд внешних факторов, вызывающих мутации. Подобные факторы называют мутагенными. К ним относят некоторые химические вещества и различного рода излучения – рентгеновские лучи, быстрые заряженные частицы, пучки нейтронов и т.д.

Польза и вред мутаций.

С точки зрения эволюции мутации, безусловно, полезны. Более того, они необходимы. Огромное разнообразие генов у каждого вида, а также многообразие существующих на Земле видов – все это есть следствие многочисленных мутаций, которые происходили на протяжении многих миллионов лет (проходят и поныне). С точки зрения отдельных организмов мутации, как правило, вредны, в отдельных случаях даже смертельны. Как следствие длительной эволюции, организм появляется на свет со сложным генотипом, достаточно хорошо приспособленным к условиям обитания. Случайное изменение генотипа скорее всего вызовет какие-то нарушения в отложенном биологическом механизме.

Мы видим, таким образом, что мутации одновременно и полезны (даже необходимы), и вредны. Если у данного вида мутации будут возникать слишком часто (например, в результате радиоактивного заражения среды обитания), то это приведет к повышению смертности организмов и, как следствие, к сокращению, а возможно, и к гибели вида. Если у данного вида мутации, напротив, происходят слишком редко, то при каком-нибудь значительном изменении внешних условий данный вид не сможет приспособиться и также погибнет. Например, мамонты не сумели приспособиться к резкому похолоданию во время ледникового периода и вымерли. Итак, плохо, когда мутаций очень много, когда они происходят очень часто. Плохо также и когда мутаций практически нет или они происходят слишком редко.

Организм и мутации.

Приспособление организма к условиям обитания предполагает также и приспособление к мутациям, вследствие чего степень вреда, приносимого мутацией, существенно снижается. Такое приспособление естественно, поскольку развитие вида непосредственно связано со степенью выживаемости его представителей.

Обсудим этот вопрос с позиций генетики. Допустим, что данная зигота возникла в результате соединения нормальной и смутировавшей гамет. Говоря о смутировавшей гамете, будем полагать, что в какой-то хромосоме имеется испорченный (смутировавший) ген. Пусть этот ген отвечает за жизненно важные для организма процессы, так что речь идет о действительно опасной мутации. Смутировавшему гену противостоит нормальный ген в парной хромосоме. Смутировавший ген может оказаться либо доминантным, либо рецессивным по отношению к нормальному гену. Рассмотрим обе возможности.