Смекни!
smekni.com

Программа сложной структуры с использованием меню (стр. 1 из 4)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ

кафедра вм

Курсовик

“Программа сложной структуры с использованием меню”

ВЫПОЛНИЛ: Пикулин Е. Г.

принял: Солодовников А. Д.

ã мОСКВА 1996 год

ОГЛАВЛЕНИЕ.

1. ВИДЫ КОНТРОЛЯ ПРОГРАММ

2. ЦЕЛИ, ПРИНЦИПЫ И ЭТАПЫ ТЕСТИРОВАНИЯ

3. СТРУКТУРНОЕ ТЕСТИРОВАНИЕ

4. СОВМЕСТНОЕ ТЕСТИРОВАНИЕ МОДУЛЕЙ

5. ФУНКЦИОНАЛЬНОЕ ТЕСТИРОВАНИЕ

6. ТЕСТИРОВАНИЕ ПРОГРАММНОГО КОМПЛЕКСА В ЦЕЛОМ

7. ОТЛАДКА ПРОГРАММ

ВИДЫ КОНТРОЛЯ ПРОГРАММ

Программный комплекс - это совокупность программных модулей, предназначенных для решения одной задачи и составляющих одно целое.

Основными разновидностями контроля программного обеспечения являются визуальный, статический и динамический.

Визуальный контроль - это проверка программ “ за столом “ , без использования компьютера. На первом этапе визуального контроля осуществляется чтение программы, причем особое внимание уделяется следующим ее элементам:

1. комментариям и их соответствию тексту программы ;

2. условиям в операторах условного выбора ( IF, CASE ) и цикла;

3. сложным логическим выражениям;

4. возможности незавершения итерационных циклов ( WHILE, REPEAT, LOOP ).

Второй этап визуального контроля - сквозной контроль программы

( ее ручная прокрутка на нескольких заранее подобранных простых тестах). Распространенное мнение , что более выгодным является перекладывание большей части работы по контролю программных средств на компьютере, ошибочно. Основной довод в пользу этого таков : при работе на компьютере главным образом совершенствуются навыки в использовании клавиатуры, в то время как программистская квалификация приобретается прежде всего за столом.

Статический контроль- это проверка программы по ее тексту (без выполнения) с помощью инструментальных средств. Наиболее известной формой статического контроля является синтаксический контроль программы с помощью компилятора , при котором проверяется соответствие текста программы синтаксическим правилам языка программирования.

Сообщения компилятора обычно делятся на несколько групп в зависимости от уровня тяжести нарушения синтаксиса языка программирования :

1. информационные сообщения и предупреждения , при обнаружении которых компилятор, как правило, строит корректный объектный код и дальнейшая работа с программой (компоновка, выполнение) возможна (тем не менее сообщения этой группы также должны тщательно анализироваться, так как их появление также может свидетельствовать об ошибке в программе - например, из-за неверного понимания синтаксиса языка);

2. сообщения об ошибках, при обнаружении которых компилятор пытается их исправить и строит объектный код, но его корректность маловероятна и дальнейшая работа с ним скорее всего не возможна;

3. сообщения о серьезных ошибках , при наличии которых построенный компилятором объектный код заведомо некорректен и его дальнейшее использование невозможно;

4. сообщения об ошибках , обнаружение которых привело к прекращению синтаксического контроля и построения объектного кода .

Однако, практически любой компилятор пропускает некоторые виды синтаксических ошибок. Место обнаружения ошибки может находиться далеко по тексту программы от места истинной ошибки, а текст сообщения компилятора может не указывать на истинную причину ошибки. Одна синтаксическая ошибка может повлечь за собой генерацию компилятором нескольких сообщений об ошибках (например, ошибка в описании переменной приводит к появлению сообщения об ошибке в каждом операторе программы, использующем эту переменную).

Второй формой синтаксического контроля может быть контроль структурированности программ, то есть проверка выполнения соглашений и ограничений структурного программирования. Примером подобной проверки может быть выявление в тексте программы ситуаций, когда цикл образуется с помощью оператора безусловного перехода (использования оператора GOTO для перехода вверх по тексту программы ). Для проведения контроля структурированности могут быть созданы специальные инструментальные средства, а при их отсутствии эта форма статического контроля может совмещаться с визуальным контролем .

Третья форма статического контроля - контроль правдоподобия программы, то есть выявление в ее тексте конструкций, которые хотя и синтаксически корректны, но скорее всего содержат ошибку или свидетельствуют о ней. Основные неправдоподобные ситуации :

1. использование в программе неинициализированных переменных (то есть переменных, не получивших начального значения) ;

2. наличие в программе описаний элементов, переменных, процедур, меток, файлов, в дальнейшем не используемых в ее тексте;

3. наличие в тексте программы фрагментов, никогда не выполняющихся;

4. наличие в тексте программы переменных, ни разу не используемых для чтения после присваивая им значений;

5. наличие в тексте программы заведомо бесконечных циклов ;

Даже если присутствие в тексте программы неправдоподобных конструкций не приводит к ее неправильной работе, исправление этого фрагмента повысит ясность и эффективность программы, т. е. благотворно скажется на ее качестве.

Для возможности проведения контроля правдоподобия в полном объеме также должны быть созданы специальные инструментальные средства, хотя ряд возможностей по контролю правдоподобия имеется в существующих отладочных и обычных компиляторах.

Следует отметить, что создание инструментальных средств контроля структурированности и правдоподобия программ может быть существенно

упрощено при применении следующих принципов:

1) проведение этих дополнительных форм статического контроля после завершения компиляции и только для синтаксически корректных программ ;

2) максимальное использование результатов компиляции программы и, в частности, информации, включаемой в листинг компилятора;

3) вместо полного синтаксического разбора текста проверяемой программы построение для нее списка идентификаторов и списка операторов с указанием всех их необходимых признаков.

При отсутствии инструментальных средств контроля правдоподобия эта фаза статического контроля также может объединяться с визуальным контролем.

Четвертой формой статического контроля программ является их верификация, то есть аналитическое доказательство их корректности.

В интуитивном смысле под корректностью понимают свойства программы, свидетельствующие об отсутствии в ней ошибок, допущенных разработчиком на различных этапах проектирования ( спецификации, проектирование алгоритма и структур данных, кодирование ). Корректность самой программы по отношению к целям, поставленным перед ее разработкой ( то есть это относительное свойство ). Отличие понятия корректности и надежности программ в следующем :

- надежность характеризует как программу, так и ее “окружение” ( качество аппаратуры, квалификацию пользователя и т.п. );

- говоря о надежности программы, обычно допускают определенную, хотя и малую, долю ошибок в ней и оценивают вероятность их появления.

Надежность можно представить совокупностью следующих характеристик :

1) целостность программного средства (способность его к защите от отказов);

2) живучесть (способность к входному контролю данных и их проверки в ходе работы) ;

3) завершенность (бездеффектность готового программного средства, характеристика качества его тестирования);

4) работоспособность (способность программного средства к восстановлению своих возможностей поле сбоев).

Очевидно, что не всякая синтаксически правильная программа является корректной в указанном выше смысле, т. е. корректность характеризует семантические свойства программ.

С учетом специфики появления ошибок в программах можно выделить две стороны понятия корректности :

- корректность как точное соответствие целям разработки программы (которые отражены в спецификации) при условии ее завершения или частичная корректность ;

- завершение программы , то есть достижение программой в процессе ее выполнения своей конечной точки.

В зависимости от выполнения или невыполнения каждого из двух названных свойств программы различают шесть задач анализа корректности :

1) доказательство частичной корректности ;

2) доказательство частичной некорректности ;

3) доказательство завершения программы ;

4) доказательство незавершения программы ;

5) доказательство тотальной (полной ) корректности (то есть одновременное решение первой и третьей задач);

6) доказательство некорректности (решение второй или четвертой задачи).

Методы доказательства частичной корректности программ как правило опираются на аксиоматический подход к формализации семантики языков программирования. В настоящее время известны аксиоматические семантики Паскаля, подмножества ПЛ/1 и некоторых других языков.

Аксиоматическая семантика языка программирования представляет собой совокупность аксиом и правил вывода. С помощью аксиом задается семантика простых операторов языка (присваивания, ввода - вывода, вызова процедур). С помощью правил вывода описывается семантика составных операторов или управляющих структур (последовательности, условного выбора, циклов). Среди этих правил вывода надо отметить правило вывода для операторов цикла так как оно требует знания инварианта цикла (формулы, истинности которой не изменяется при любом прохождении цикла).

Построение инварианта для оператора цикла по его тексту является алгоритмически не разрешимой задачи, поэтому для описания семантики циклов требуется своего рода ”подсказка” от разработчика программы.

Наиболее известным из методов доказательства частичной корректности программ является метод индуктивных утверждений предложенный Флойдом и усовершенствованный Хоаром. Метод состоит из трех этапов.