регистрация /  вход

Модуль АФАР (стр. 1 из 7)

Исходные данные:

1. Назначение передатчика — передающий модуль;

2. Мощность: P вых =0,5 Вт; P вх 20 мВт.

3. Диапазон частот: f вых =0,5 ГГц; f вх =0,25 ГГц.

4. Характеристика сигналов, подлежащих передаче: ЧМ-сигнал.

5. Место установки — борт ЛА.

6. R напр =50 Ом.

1. Введение

На современном этапе развития радиоустройств СВЧ все большее применение находят передающие, приемные и приемопередающие активные фазированные антенные решетки (АФАР), в которых излучатели (или группа излучателей) связаны с отдельным модулем, содержащим активные элементы в виде различного типа генераторных и усилительных каскадов и преобразователей частоты колебаний, а также пассивные умножители частоты.

В передающей АФАР активная часть отдельного модуля, возбуждаемого от общего задающего генератора, фактически имеет функциональную схему, аналогичную схеме усилительно-умножительного СВЧ-тракта радиопередающего устройства, выполненную на генераторах с внешним возбуждением. В качестве активных приборов этих генераторов во многих практических случаях используются полупроводниковые СВЧ-приборы, позволяющие повысить надежность и долговечность модулей АФАР по сравнению с модулями на электровакуумных СВЧ-приборах, при обеспечении средней выходной мощности модуля до десятков и сотен ватт (при использовании схем сложения СВЧ-мощностей) в дециметровом диапазоне и до десяти ватт в сантиметровом диапазоне.

В том случае, когда частота колебаний на выходе модуля в целое число раз больше, чем на его входе, один из генераторных каскадов модуля должен быть умножителем частоты. Функциональная схема передающей АФАР, в модулях которой применены умножители частоты, приведена на рис. 1.

Введение умножителя частоты в модуль АФАР позволяет на выходе модуля получить колебания с определенной мощностью на тех частотах, на которых полупроводниковый усилитель уже неработоспособен. Сказанное в наибольшей степени относится к мощным усилителям на транзисторах, предельные рабочие частоты которых в настоящее время не превышают 6-7 ГГц. Поэтому малогабаритные модули АФАР дециметрового диапазона волн на полупроводниковых приборах, построенные на основе транзисторного усилителя мощности и последующего умножителя частоты, имеют генераторную часть.

Обычно при проектировании генераторной части модуля АФАР с умножением частоты бывают заданы P вых , f вых , f вх , а также значение P вх . В результате проектирования определяется число умножительных и усилительных каскадов в генераторной части модуля, типы активных приборов и электрических схем, используемые в каскадах, значения параметров режима активных приборов и элементов схем каскадов, а также вид конструктивного выполнения каскадов.

2. расчет Структурной схемы модуля АФАР

Структурная схема модуля АФАР представлена на рис. 2.

Имея заданную выходную мощность P вых , зададимся контурными КПД согласующих цепей (СЦ1, СЦ2, СЦ3) (ηк СЦ1 к СЦ2 к СЦ3 к СЦ =0,9) и найдем мощность на выходе умножителя частоты:

.

Зная выходную мощность умножителя частоты, коэффициент умножения и входную частоту, с помощью программы MULTIPLY, разработанной на каф. 406, выберем транзистор и рассчитаем его режим работы (результаты этих расчетов даны в п. 4.1.1.).

В числе прочих результатов программа выдает коэффициент усиления по мощности K УЧ =9,958, используя который, мы вычисляем мощность на входе умножителя частоты, совпадающую, разумеется с мощностью на выходе СЦ2 (P вых СЦ2 ):

.

Поскольку, как упоминалось выше, мы задали контурный КПД согласующих цепей равным ηк СЦ =0,9, то мощность на входе СЦ2 P вх СЦ2 , равная мощности на выходе усилителя мощности P вых УМ , равна:

.

Теперь, зная мощность на выходе усилителя мощности (P вых УМ ) и зная его рабочую частоту f =0,25 ГГц, с помощью программы PAMP1, также разработанной на каф. 406, выбираем активный прибор (транзистор) и рассчитываем его режим работы для СВЧ усилителя мощности (результаты этих расчетов приведены в п. 4.2.1.). Полученный в ходе расчетов коэффициент усиления K УМ позволяет найти мощность на входе усилителя, тождественно равную мощности на выходе входной согласующей цепи СЦ1:

.

Поскольку мы задали контурный КПД согласующих цепей равным ηк СЦ =0,9, то мощность на входе СЦ1 P вх СЦ1 равна:

,

что меньше 20 мВт, ограничивающих по заданию входную мощность сверху.

3. Методики расчета каскадов модуля

3.1. Методика расчета РЕЖИМА ТРАНЗИСТОРА МОЩНОГО СВ Ч УСИЛИТЕЛЯ мощности

Рас сматриваемая методика может быть ис пользована для рас чета режима мощного транзис тора ус илителя, работающего на час тотах порядка сотен мегагерц , и позволяет получить параметры режима, достаточно близкие к экспериментальным. На значениях час тоты 1… 3 ГГц погрешнос ть рас чета в озрас тает из-за ис пользования упрощенной эквивалентной схемы тран зистора и нед ос таточной точнос ти при определении ее параметров. В диапазоне частот выше 3 ГГц эти недостатки проявляются еще более резко. На режим начинает оказывать с ильное влияние даже с равнительно небольшой разброс значений индуктивностей выводов и емкос тей корпуса, а также многочис ленные паразитные связи в конс трукции транзис тора. Эти обс тоятельс тва ограничивают в ерхний час тотный предел применимос ти рас с матрив аем ой методики.

В методике рас чета ис пользуетс я эквивалентная с хема, дополненная некоторыми элементами, с ущес твенными для диапазона С ВЧ.

Параметры э кв ивалентной с хемы транзис тора зав ис ят от протекающих токов и прило женных напряжений. Од нако об ычно с читают, что в выбранном режиме транзис тора параметры с хемы будут пос тоянными в пределах каждой облас ти работы: рабочей облас ти (К замкнут) и облас ти отс ечки (К разомкнут). Параметры эквивалентной схемы приводятся в с правочных данных, а наименования их даны в разделе “Обозначения” пособия [1]. Некоторые параметры, которые отс утс твуют в с правочниках, можно оценить по формулам:

С д =С э +С диф ; С к =С ка +С кп ;

; τк =r б С ка ;
;

;
;
.

При ус реднении S п ток i к рекомендуетс я принять равным половине выс оты импульс а коллекторного тока i к max или амплитуде его первой гармоники, которая в типичных режимах близка к 0,5i к max . Емкос ть С к определяют при выбранном напряжении U к0 . На час тотах

сопротивление r с лабо шунтирует емкос ти и им можно пренебречь. Неравенс тво
определяет нижнюю час тотную границу проводимого анализа. При рас чете принимают, что в диапазоне СВЧ входной ток мощных транзис торов оказывается близким к гармоническому за с чет подавления высших гармоник индуктивностью в ходного электрода. Форма колл екторного напряжения принимается гармонической. Поэтому далее будем полагать, что входной ток и коллекторное напряжение не с одерж ат выс ших гармоник и эквивалентный генератор тока S п (U п -U' ) нагружен на диссипативное с опротивление. Рас чет производим для граничного режима работы транзистора.