Смекни!
smekni.com

Автоматизированная система контроля знаний специалистов по дефектоскопии (стр. 1 из 15)

АВТОМАТИЗИРОВАННАЯ СИСТЕМА КОНТРОЛЯ ЗНАНИЙ СПЕЦИАЛИСТОВ ПО ДЕФЕКТОСКОПИИ


Реферат

Пояснительная записка имеет объём 80 страниц, 31 рисунок, 7 таблиц, 12 источников, 6 листов графического материала формата А1.

НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ, ДИАГНОСТИКА, ДЕФЕКТОСКОПИЯ, ТЕСТ, ОЦЕНКА ЗНАНИЙ, ВОПРОСЫ, МЕТОД, ОБУЧЕНИЕ, ОТВЕТЫ

Объектом исследования является разработка системы автоматизированного контроля знаний специалистов по дефектоскопии.

Актуальность создания подобной системы объясняется необходимостью автоматизации процесса тестирования уровня квалификации специалистов. Компьютерное тестирование позволит уменьшить объём рутинной работы экзаменаторов, снизить влияние «человеческого фактора» на результат контроля.

Новизной предлагаемого решения является возможность редактирования и создания новых комплектов контрольных вопросов и ответов. Предусматривается обучающий режим работы системы, при котором обучаемый имеет возможность получить всесторонние комментарии по интересующим вопросам. Этот режим позволит автоматизировать процесс подготовки слушателей к сдаче квалификационного экзамена. Архитектура программного продукта является открытой и обеспечивает дальнейшее расширение функциональности.

Применение предлагаемого программного продукта позволит повысить эффективность и беспристрастность контроля знаний, увеличить производительность труда комиссии, проводящей аттестацию.

Программный продукт проходит испытания в Самарском филиале ОАО «Оргэнергонефть». После завершения периода контрольных испытаний планируется его использование для решения задач по обучению и тестирования специалистов по неразрушающему контролю.


Содержание

Введение

1. Анализ предметной области

1.1 Обзор автоматизированных систем обучения и контроля знаний

1.2 Проектирование автоматизированных дидактических программ

1.2.1 Исходная концепция

1.2.2 Целевые показатели

1.3 Психологические механизмы усвоения знаний

1.3.1 Бихевиористская теория обучения

1.3.2 Ассоциативно-рефлекторная теория усвоения

1.3.3 Теория поэтапного формирования умственных действий

1.4 Принципы создания эффективной тестирующей программы

1.4.1 Использование оценочных методик

1.4.2 Использование оценочного инструментария целенаправленным образом

1.4.3 Использование в оценках персонала целостного подхода

1.4.4 Использование непредубежденного оценочного инструментария

1.4.5 Использование только надежного оценочного инструментария

1.4.6 Валидность оценочного инструментария

1.4.7 Использование проверенных оценочных процедур и инструментов

1.4.8 Использование орудий оценки, приемлемых для целевой группы

1.4.9 Использование документированных оценочных инструментов

1.4.10 Создание условий тестирования, приемлемых для всех тестируемых

1.4.11 Приспособления оценочного процесса для людей с ограничениями

1.4.12 Безопасность оценочного инструментария

1.4.13 Конфиденциальность результатов оценки

1.4.14 Обеспечение корректной и надлежащей интерпретации оценок

1.5 Самарский филиал ОАО "Оргэнергонефть"

1.5.1 Подготовка кадров

1.5.2 Обучение эксплуатационного персонала

1.5.3 Аттестация и сертификация

1.5.4 Аккредитация

1.5.4 Аккредитация

1.6 Роль и место методов неразрушающего контроля

1.6.1 Проблема обеспечения максимально возможного срока службы систем

1.6.2 Проблемы выявления дефектов и характеристики методов НК

1.6.3 Выбор метода НК

1.6.4 Чувствительность метода контроля

2. Проектирование системы контроля знаний

2.1 Общая структура системы

2.1 Разработка подсистем

2.1.1 Подсистема конфигурирования

2.1.2 Подсистема тестирования

2.1.3 Подсистема сервиса

3. Реализация программного продукта

3.1 Общее описание пакета программ

3.2 Общие элементы построения приложений

3.2.1 Проверка на повторный запуск

3.2.2 Заставка

3.3 Редактор теста

3.3.1 Вход в программу

3.3.2 Главное окно

3.3.3 Редактирование вопросов

3.3.4 Заданиенастроек теста

3.3.5 Выбор метода неразрушающего контроля

3.3.6 Экспорт текста

3.3.7 Смена паролей

3.4 Клиентская программа тестирования

3.4.1 Регистрация

3.4.2 Тестирование

3.4.3 Просмотр результатов тестирования

3.5 Отладка. Контроль использования динамической памяти

3.6 Защита информации

3.6.1 Защита от несанкционированного использования

3.6.2 Защита данных

3.6.3 Защита от программ-шпионов

4. Экономическое обоснование

4.1 Расчет затрат на создание системы

4.2 Расчет экономической эффективности разрабатываемой системы

4.2.1 Расчет экономического эффекта у производителя системы

4.2.2 Расчет экономического эффекта у пользователя

5. Обеспечение безопасности жизнедеятельности

5.1 Общие положения

5.2 Требования к производственным процессам и оборудованию

5.3 Требования к организации рабочих мест

5.4 Требования к естественному и искусственному освещению

5.5 Требования к микроклимату и ионизации воздушной среды

5.6 Требования к шуму и вибрации

5.7 Требования к ионизирующим и неионизирующим излучениям

5.8 Оптимизация трудовой деятельности пользователей ПЭВМ (ПК)

Заключение

Список использованных источников


Введение

Подготовка квалифицированных специалистов по дефектоскопии является важной задачей, т.к. дефектоскописты играют важную роль в различных областях промышленного производства. Поэтому, по отношению к ним, требуются твёрдые теоретические и практические знания контрольных приборов, а также методов контроля дефектов. Для получения или подтверждения квалификации специалисты сдают квалификационный экзамен. Экзамен предусматривает получение ответов на предложенные вопросы. При этом, каждый вопрос имеет несколько вариантов ответов. На экзаменаторов ложится рутинная работа по подготовке экзамена и проверке полученных ответов. Всего, по теме экзамена предусматривается 200 и более вопросов. Поэтому, для каждого человека, сдающего экзамен, экзаменаторам необходимо подготовить список из 80 вопросов, выбранных случайным образом. Это необходимо для того, чтобы исключить вероятность фальсификации экзаменационной оценки.

Составление списка вопросов, а также и проверка ответов на них является большой и рутинной работой для экзаменаторов.

Для успешной сдачи квалификационного экзамена слушателям необходимо твёрдо знать ответы на все вопросы темы. Поэтому возникает вопрос автоматизации подготовки слушателей в экзамену.

В процессе подготовки слушатель должен иметь возможность получать разъяснения и подробные правильные ответы на предложенные вопросы. В этом случае возникает необходимость создания электронного методического пособия.

Количество и формулировки вопросов могут меняться, добавляться, удаляться. Поэтому, экзаменаторам приходится периодически корректировать списки вопросов.

Указанные выше факты указывают на необходимость компьютерной автоматизации проведения экзаменов. Создаваемый программный продукт должен удовлетворять следующим требованиям:

1. автоматическое составление списка вопросов, выбранных случайным образом

2. возможность работы в обучающем режиме, при котором пользователь может получить развёрнутую информацию по заданному вопросу.

3. необходимо наличие утилиты для конфигурирования параметров теста.

4. программный продукт должен иметь возможность создания нового набора вопросов с ответами и комментариями.


1. Анализ предметной области

1.1 Обзор автоматизированных систем обучения и контроля знаний

Систематические исследования в области компьютерной поддержки процесса обучения имеют более чем 30-летнюю историю. За этот период в США, Канаде, Англии, Франции, Японии, России и ряде других стран было разработано большое количество компьютерных систем учебного назначения, ориентированных на различные типы ЭВМ. Детальный обзор аппаратных и программно-информационных средств поддержки учебного процесса, созданных до начала 80-х гг., приведен в справочнике [1], а описание более поздних разработок можно найти в периодических обзорных выпусках российского научно-исследовательского института высшего образования (НИИ ВО) или в выпускаемых этим же институтом каталогах программных средств учебного назначения, например в [2-5].

Сферы применения компьютерных средств поддержки процесса обучения гораздо шире, чем только учебные заведения. Это крупные промышленные предприятия, военные и гражданские организации, ведущие самостоятельную подготовку и переподготовку кадров [6]. Кроме того, в цивилизованных странах становится уже стандартом снабжать новые сложные машины и технологии компьютерными обучающими системами, облегчающими и ускоряющими процесс их освоения и внедрения. За рубежом разработку "мягкого" компьютерного продукта учебного назначения (методических и программно-информационных средств) считают весьма дорогостоящим делом в силу его высокой наукоемкости и необходимости совместной работы высококвалифицированных специалистов: психологов, преподавателей-предметников, компьютерных дизайнеров. Несмотря на это, многие зарубежные крупные фирмы финансируют проекты создания компьютерных учебных систем в учебных заведениях и ведут собственные разработки в этой области [3].

В методологическом плане разработка и использование компьютерных средств поддержки обучения, в первую очередь - "мягкого" продукта, с самого начала развивались по двум направлениям, слабо связанным между собой. Первое направление опирается в своей основе на идеи программированного обучения. В его рамках разрабатываются и эксплуатируются автоматизированные обучающие системы (АОС) по различным учебным дисциплинам. Ядром АОС являются так называемые авторские системы, позволяющие преподавателю-разработчику вводить свой учебный материал в базу данных и программировать с помощью специальных авторских языков или других средств алгоритмы его изучения. Характерными представителями АОС, построенных на алгоритмах программированного обучения, длительное время являлись: за рубежом система PLATO, в нашей стране семейство АОС ВУЗ [1]. С начала 90-х годов в России и странах СНГ распространяются инструментальные среды для создания компьютерных курсов на ПЭВМ типа IBM PC зарубежного (Private Tutor, LinkWay, Costoc) и отечественного производства: АДОНИС, АСОК, УРОК и др.