Смекни!
smekni.com

Анализ и моделирование цифровых и аналоговых схем (стр. 1 из 2)

Министерство образования республики Беларусь

Учреждение образования "Полоцкий государственный университет"

Кафедра конструирования и технологии РЭС

Контрольная работа

По курсу " Теоретические основы САПР "

Выполнил

Номер зачетной книжки

Проверил

Новополоцк 2008

Задача №1. Оценка статического риска сбоя

Задание: для заданной схемы оценить риск статического сбоя по всем выходным переменным для заданного варианта изменения вектора входных переменных.

Исходные данные:

Схема:

Заданный вариант изменения вектора входных переменных:

X=(a,b,c) c (0,0,1) на (1,1,1)

Решение:

Для оценки риска статического сбоя необходимо разработать синхронную модель цифровой схемы в трехзначной логике. Математическая модель заданной схемы имеет вид:

При анализе трехзначных моделей значения всех переменных – входных и выходных вычисляются трижды:

1. Исходное значение вектора входных переменных X=(a,b,c) задано заданием; исходное значение вектора выходных переменных Y=(e,g) вычисляется по правилам двоичной логики;

2. Окончательное значение вектора входных переменных X=(a,b,c) задано заданием; окончательное значение вектора выходных переменных Y=(e,g) вычисляется по правилам двоичной логики;

3. Промежуточные значения входных переменных X=(a,b,c) определяются по следующему правилу: если исходное значение входной переменной совпадает с окончательным, то промежуточное равно исходному и окончательному. Если исходное значение входной переменной не совпадает с окончательным, т.е. имеет место переключение входного сигнала в течение такта модельного времени, то промежуточное равно 2 (неопределенное состояние переключения). Промежуточные значения выходных переменных Y=(e,g) рассчитываются по правилам трехзначной логики. Статический риск сбоя по выходной переменной имеет место в случае, если сочетание значений этой переменной в исходном, промежуточном и окончательном состоянии имеют вид 0-2-0 или 1-2-1.

Правила выполнения основных логических операций И, ИЛИ, НЕ в двоичной и трехзначной логике для произвольных переменных а и b приведены в таблице 1:

Таблица 1

a 0 1 2 0 1 2 0 1 2
b 0 0 0 1 1 1 2 2 2
0 0 0 0 1 2 0 2 2
0 1 2 1 1 1 2 1 2
1 0 2 1 0 2 1 0 2

Результат анализа трехзначной модели заданной схемы приведен в таблице 2.

Таблица 2

Значения переменных входные выходные
a b c e g
Исходное 0 0 1 1 1
Промежуточное 2 2 0 2 2
Окончательное 1 1 1 0 1

Таким образом, результат расчета по выходным переменным e и g показывает наличие статистического риска сбоя.

Задача №2. Анализ цифровых схем по методу простой итерации и событийному методу

Задание: выполнить анализ заданной схемы по методу простой итерации и событийному методу для заданного изменения вектора входных переменных.

Исходные данные:

Схема:

Заданный вариант изменения вектора входных переменных:

X=(a,b,c,d,e) меняет свое значение с 00100 на 11101

Решение:

Для выполнения анализа схемы необходимо разработать ее синхронную модель в двоичной логике. Математическая модель заданной схемы имеет вид:


Для реализации анализа по методу простой итерации необходимо задать начальное приближение для вектора выходных переменных Y0=(f,g,h,p,q). Для расчета начальных приближений вектора выходных переменных воспользуемся начальным значением вектора входных переменных X=(a,b,c,d,e)=(00100), предварительно расположив уравнения в порядке прохождения сигналов по схеме:

Y0=(f,g,h,p,q)=( 1,0,1,1,1).

Метод простой итерации состоит в выполнении итераций по формуле:

Yi=y (Yi-1, X),

где Yi - значение вектора Y на i-й итерации, т.е. при вычислении Y1 в правые части уравнений модели поставляются значения выходных переменных из начального приближения Y0, при вычислении Y2 – значения из результата первой итерации Y1 и так далее. Если Yi=Yi-1, то решение найдено; если

Yi¹Yi-1, то выполняется новая итерация; если итерационный процесс не сходится, то это свидетельствует об ошибках проектирования схемы устройства, вызывающих неустойчивость его состояния.

Результат анализа заданной схемы по методу простой итерации приведен в таблице 3.

Таблица 3

итерации

Начальное приближение Y0
g p f h q
0 1 1 1 1

1

2

0

0

1

1

0

0

1

1

1

1

Из таблицы 3 видно, что потребовалось два раза обращаться к каждому из пети уравнений модели, прежде чем результат второй итерации, совпадающий с результатом первой итерации, показал, что решение найдено.

Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d,е) с 00100 на 11101 для заданной схемы равно:

Y=(e,g,p,f,h,q)=(0,1,0,1,1).

При использовании событийного метода вычисления на каждой итерации выполняются только по уравнениям активизированных элементов, т.е. элементов, у которых хотя бы на одном входе произошло событие (изменилась входная переменная). В алгоритме событийного метода на каждом шаге вычислительного процесса имеется своя группа активизированных элементов.

В заданном варианте изменения вектора входных переменных изменяются только значения переменных а, b и е, следовательно, на первой итерации при реализации событийного алгоритма анализа должны быть пересчитаны только выходные переменные f и h, в правые части уравнений которых входят аргументами b и d. Если по результатам вычисления значения f и h совпадут с начальным приближением, то решение будет найдено, если хотя бы одна из этих переменных изменится, то на второй итерации должны быть пересчитаны те выходные переменных, в правые части уравнений которых входят изменившиеся в результате первой итерации переменные. Процесс продолжается до тех пор, пока в результате очередной итерации значения рассчитываемых переменных не совпадут с их предыдущими значениями, т.е. до выполнения условия Yi=Yi-1.

Результат анализа заданной схемы по методу простой итерации приведен в таблице 4.

Таблица 4

итерации

Начальное приближение Y0 Изменяющиеся переменные Активизированные уравнения
e g p f h q
0 0 1 1 1 0

0

1

2

3

4

5

6

0

0

1

1

1

0

1

0

1

1

0


0

1

1

b, d

f

g

h

q

p

-

4 и 5

2

5

6

3

6

-

Результат 0 1 0 0 0 1

Как видно из таблицы 4, на 6-ой итерации результат расчета переменной q совпал с ее предыдущим значением, следовательно решение найдено.

Таким образом, искомое значение вектора выходных переменных при изменении X=(a,b,c,d) с 0110 на 0011 при расчете по событийному методу для заданной схемы совпадает с результатом анализа по методу простой итерации и равно:

Y=(e,g,p,f,h,q)=(0,1,0,0,0,1).

Однако, при вычислении по методу простой итерации, потребовалось на каждой итерации вычислять все выходные переменные, т.е. объем вычислений составил 6×6=36 операций. Тот же результат при использовании событийного метода потребовал значительно меньшего объема вычислений, а именно выполнения 8 операций. Таким образом, трудоемкость событийного метода значительно меньше.

Задача №3. Анализ цифровых схем по методам Зейделя