регистрация / вход

История развития микропроцессоров

Краткая история развития микропроцессора как важнейшего элемента любого персонального компьютера. Сущность, значение, функциональные возможности процессоров. Особенности микропроцессоров Pentium, Intel i80386 и i80486. Применение и значение сопроцессора.

Содержание

Введение

1 Развитие микропроцессоров

2 Микропроцессоры i80386

3 Микропроцессоры i80486

4 Процессоры Pentium

5 Производительность процессоров

6 Сопроцессоры

Список используемой литературы


Введение

Важнейший элемент любого PC - микропроцессор. Он в большей степени определяет возможности вычислительной системы. Первый микропроцессор i4004 был изготовлен в 1971г и с тех пор фирма Intel прочно удерживает лидирующее положение на сегменте рынка. Наиболее успешен проект разработки i8080. Именно на ней был основан компьютер "Альтаир", для которого Б. Гейтс написал свой первый интерпретатор Basic. Классическая архитектура i8080 оказала огромное влияние на дальнейшее развитие однокристальных микропроцессоров. Настоящим промышленным стандартом для PC стал микропроцессор i8088, который был анонсирован Intel в июне 1979г. В 1981г "голубой гигант" (фирма IBM) выбрала этот процессор для своего PC. Первоначально микропроцессор i8088 работал на частоте 4.77 МГц и имел быстродействие около 0.33 Mops, однако потом были разработаны его клоны, рассчитанные на более высокую тактовую частоту 8 МГц. Микропроцессор i8086 появился ровно на год раньше, в июле 1978г, стал популярен благодаря компьютеру CompaqDecPro. Опираясь на архитектуру i8086 и учитывая запросы рынка, в феврале 1982г Intel выпустила i80286. Он появился одновременно с новым компьютером IBM PC AT. Наряду с увеличением производительности имел защищенный режим (использовал более изощренную технику управления памятью). Защищенный режим позволил таким программам, как Windows 3.0 и OS/2 работать с ОЗУ выше 1Мб. Благодаря 16-ти разрядным данным на новой системной шине можно обмениваться с ПУ 2-х байтными сообщениями. Новый микропроцессор позволял в защищенном режиме обращаться к 16Мб ОЗУ. В процессоре i80286 впервые на уровне микросхем были реализованы мультизадачность и управление виртуальной памятью. При тактовой частоте 8 МГц достигалась производительность 1.2 Mips.

1 Развитие микропроцессоров

ЭВМ получили широкое распространение, начиная с 50-х годов. Прежде это были очень большие и дорогие устройства, используемые лишь в государственных учреждениях и крупных фирмах. Размеры и форма цифровых ЭВМ неузнаваемо изменились в результате разработки новых устройств, называемых микропроцессорами.

Микропроцессор (МП) - это программно-управляемое электронное цифровое устройство, предназначенное для обработки цифровой информации и управления процессом этой обработки, выполненное на одной или нескольких интегральных схемах с высокой степенью интеграции электронных элементов.

В 1970 году Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ - первый микропроцессор Intel-4004, который уже в 1971 году был выпущен в продажу.

15 ноября 1971 г. можно считать началом новой эры в электронике. В этот день компания приступила к поставкам первого в мире микропроцессора Intel 4004.

Это был настоящий прорыв, ибо МП Intel-4004 размером менее 3 см был производительнее гигантской машины ENIAC. Правда работал он гораздо медленнее и мог обрабатывать одновременно только 4 бита информации (процессоры больших ЭВМ обрабатывали 16 или 32 бита одновременно), но и стоил первый МП в десятки тысяч раз дешевле.

Кристалл представлял собой 4-разрядный процессор с классической архитектурой ЭВМ гарвардского типа и изготавливался по передовой p-канальной МОП технологии с проектными нормами 10 мкм. Электрическая схема прибора насчитывала 2300 транзисторов. МП работал на тактовой частоте 750 кГц при длительности цикла команд 10,8 мкс. Чип i4004 имел адресный стек (счетчик команд и три регистра стека типа LIFO), блок РОНов (регистры сверхоперативной памяти или регистровый файл - РФ), 4-разрядное параллельное АЛУ, аккумулятор, регистр команд с дешифратором команд и схемой управления, а также схему связи с внешними устройствами. Все эти функциональные узлы объединялись между собой 4-разрядной ШД. Память команд достигала 4 Кбайт (для сравнения: объем ЗУ миниЭВМ в начале 70-х годов редко превышал 16 Кбайт), а РФ ЦП насчитывал 16 4-разрядных регистров, которые можно было использовать и как 8 8-разрядных. Такая организация РОНов сохранена и в последующих МП фирмы Intel. Три регистра стека обеспечивали три уровня вложения подпрограмм. МП i4004 монтировался в пластмассовый или металлокерамический корпус типа DIP (Dual In-line Package) всего с 16 выводами. В систему его команд входило всего 46 инструкций.

Вместе с тем кристалл располагал весьма ограниченными средствами ввода/вывода, а в системе команд отсутствовали операции логической обработки данных (И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ), в связи с чем их приходилось реализовывать с помощью специальных подпрограмм. Модуль i4004 не имел возможности останова (команды HALT) и обработки прерываний.

Цикл команды процессора состоял из 8 тактов задающего генератора. Была мультиплексированная ША (шина адреса)/ШД (шина данных), адрес 12-разрядный передавался по 4-разряда.

1 апреля 1972 г. фирма Intel начала поставки первого в отрасли 8-разрядного прибора i8008. Кристалл изготавливался по р-канальной МОП-технологии с проектными нормами 10 мкм и содержал 3500 транзисторов. Процессор работал на частоте 500 кГц при длительности машинного цикла 20 мкс (10 периодов задающего генератора).

В отличие от своих предшественников МП имел архитектуру ЭВМ принстонского типа, а в качестве памяти допускал применение комбинации ПЗУ и ОЗУ.

По сравнению с i4004 число РОН уменьшилось с 16 до 8, причем два регистра использовались для хранения адреса при косвенной адресации памяти (ограничение технологии - блок РОН аналогично кристаллам 4004 и 4040 в МП 8008 был реализован в виде динамической памяти). Почти вдвое сократилась длительность машинного цикла (с 8 до 5 состояний). Для синхронизации работы с медленными устройствами был введен сигнал готовности READY.

Система команд насчитывала 65 инструкций. МП мог адресовать память объемом 16 Кбайт. Его производительность по сравнению с четырехразрядными МП возросла в 2,3 раза. В среднем для сопряжения процессора с памятью и устройствами ввода/вывода требовалось около 20 схем средней степени интеграции.

Возможности р-канальной технологии для создания сложных высокопроизводительных МП были почти исчерпаны, поэтому "направление главного удара" перенесли на n-канальную МОП технологию.

1 апреля 1974 МП Intel 8080 был представлен вниманию всех заинтересованных лиц. Благодаря использованию технологии п-МОП с проектными нормами 6 мкм, на кристалле удалось разместить 6 тыс. транзисторов. Тактовая частота процессора была доведена до 2 Мгц, а длительность цикла команд составила уже 2 мкс. Объем памяти, адресуемой процессором, был увеличен до 64 Кбайт.

За счет использования 40-выводного корпуса удалось разделить ША и ШД, общее число микросхем, требовавшихся для построения системы в минимальной конфигурации, сократилось до 6.

В РФ были введены указатель стека, активно используемый при обработке прерываний, а также два программнонедоступных регистра для внутренних пересылок. Блок РОНов был реализован на микросхемах статической памяти. Исключение аккумулятора из РФ и введение его в состав АЛУ упростило схему управления внутренней шиной.

Новое в архитектуре МП - использование многоуровневой системы прерываний по вектору. Такое техническое решение позволило довести общее число источников прерываний до 256 (до появления БИС контроллеров прерываний схема формирования векторов прерываний требовала применения до 10 дополнительных чипов средней интеграции). В i8080 появился механизм прямого доступа в память (ПДП) (как ранее в универсальных ЭВМ IBM System 360 и др.).

ПДП открыл зеленую улицу для применения в микроЭВМ таких сложных устройств, как накопители на магнитных дисках и лентах дисплеи на ЭЛТ, которые и превратили микроЭВМ в полноценную вычислительную систему.

Традицией компании, начиная с первого кристалла, стал выпуск не отдельного чипа ЦП, а семейства БИС, рассчитанных на совместное использование.

Современные микропроцессоры построены на 32-х битной архитектуре x86 или IA-32 (Intel Architecture 32 bit), но совсем скоро произойдет переход на более совершенную, производительную 64-х битную архитектуру IA-64 (Intel Architecture 64 bit). Фактически переход уже начался, этому свидетельствует массовый выпуск и выход в продажу в 2003 году нового микропроцессора Athlon 64 корпорации AMD (Advanced Micro Devices), этот микропроцессор примечателен тем, что может работать как с 32-х битными приложениями, так и с 64-х битными. Производительность 64-х битных микропроцессоров намного выше.

2 Микропроцессоры i80386

В октябре 1985 года Intel анонсировал первый 32-разрядный микропроцессор i80386. Первым компьютером, использующий этот микропроцессор, был CompaqDeskPro 386. Полностью 32-разрядная архитектура в новом микропроцессоре была дополнена расширенным устройством управления памятью, которое помимо блока сегментации было дополнено блоком управления страницами. Этого устройство позволяет легко переставлять сегменты из одного места памяти в другое. На тактовой частоте 16 МГц быстродействие составляло 6 Mips. 32-адресные линии позволяли физически адресовать 4Gb памяти, кроме того, был введен новый режим управления виртуальной памятью V86. В этом режиме могли одновременно могли выполняться несколько задач для i8086.

Микропроцессор i80386, изготовленный на 1 кристалле с сопроцессором, назывался i80386DX. Более дешевая модель 32-разрядного микропроцессора появилась только в июле 1988г (i80386SX). Новый микропроцессор использовал 16-разрядную шину данных и 24-разрядную шину адреса. Это было особенно удобно для стандартного IBM PC AT. Программное обеспечение, написанное для i80386DX, работало на i80386DX. Внутренние регистры были полностью идентичны. Индекс SX произошел от слова "шестнадцать"(16-разрядная шина данных). Для i486 SX стал означать отсутствие сопроцессора. На осенней выставке в 1989г Intel анонсировала i80486DX, который содержал 1.2 млн. транзисторов на одном кристалле и был полностью совместим с остальными 86-ми процессорами. Новые микросхемы впервые объединили на 1 кристалле ЦП, сопроцессор и Кэш-память. Использование конвейерной архитектуры, присущей RISC-процессорам, позволяющим достичь 4-х кратного производительности обычных 32-разрядных систем. 8Кб встроенной Кэш-памяти ускоряли выполнение за счет промежуточного хранения часто используемых команд и данных. На тактовой частоте 25 МГц микропроцессор имел производительность 16.5 Mips. Созданная в январе 1991г. версия микропроцессора с тактовой частотой 50 МГц позволял увеличить производительность еще на 50%. Встроенный сопроцессор существенно ускорял математические вычисления, однако впоследствии стало ясно, что подобный микропроцессор необходим только 30% пользователей.

3 Микропроцессоры i80486

Появление нового микропроцессора i80486SX можно считать одним из важнейших событий 1991г. Предварительные испытания показали, что i486SX с частотой 20 МГц работал примерно на 40% быстрее i486DX с частотой 33 МГц. Микропроцессор i486SX содержит на кристалле КЭШ память, а математический сопроцессор заблокирован. Если микропроцессор i486DX был ориентирован на применение в сетевых серверах и на рабочих станциях, то i486SX послужил отправной точкой для создания мощных настольных компьютеров. В семействе i486 предусмотрены несколько новых возможностей для построения мультипроцессорных систем: команды поддержки, механизм семафоров памяти. Аппаратно реализовано выявление недостоверности строки Кэш-памяти, обеспечивающее согласованность между несколькими модулями Кэш-памяти. Для микропроцессоров семейства i486 допускалась адресация физической памяти 4Gb и виртуальной памяти размером 64 Тб. К концу 1990г 32-разрядные микропроцессоры стали стандартными для компьютеров Notebook, однако, типичные микросхемы i386DX/SX не полностью отвечали требованиям разработчиков портативных компьютеров. В 1990г фирмой Intel был разработан i386SL, который представлял собой интегрированный вариант микропроцессора i386SX, базовая архитектура которого была дополнена еще несколькими контроллерами. Все компоненты, необходимые для построения портативного компьютера, сосредоточены в 2 микросхемах: микропроцессор i80386SL и периферийный контроллер i82360SL. В набор i386SL впервые введены новые прерывания SMI, которые могли быть использованы для обработки событий, связанных с управлением потребляемой мощностью. Вместе с мат. сопроцессором i80387SL данный набор микросхем позволял создавать компьютер на площади, ненамного превышающей размер игральной карты. Микросхема i80486SL представляет собой самый производительный процессор серии SL, разработанный Intel в конце 1992г. По производительности он уступает i80486DX, но, благодаря пониженному напряжению питания (3.3 V), он может эффективно использоваться в портативных компьютерах. Производительность систем такого типа повышается за счет 16-разрядной шины PI-интерфейса, который поддерживает быстрый интерфейс графического дисплея и устройств хранения информации на основе Flash-памяти.

В 1992 году Intel объявила о создании 2-го поколения МП, названных i486DX2. Они обеспечивали новую технологию, при которой скорость работы ядра МП в 2 раза выше скорости остальной части системы. Тем самым появилась возможность объединения высокой производительности МП с внутренней частотой 50МГц и эффективные по скорости 25/33МГц системы. Новые микросхемы по-прежнему включали в себя ЦП, математический сопроцессор и кэш-память на 8Кб. Компьютеры, построенные на базе i486DX2, работают приблизительно на 70% быстрее тех, что основаны на МП i486DX2 первого поколения. Несколько позже появились процессоры на базе i486SX2, в которых отсутствует встроенный сопроцессор. Следует напомнить, что технология умножения частоты стола использоваться на процессорах OverDrive. Основное отличие DX2 и OverDrive в том, что первые монтируются на системной плате еще при сборке машины, а вторые устанавливаются самим пользователем. Внутренние функциональные узлы используют удвоенную тактовую частоту, в то время как остальные элементы системной платы работают с обычной скоростью. Это позволяет увеличить производительность системы за счет хранения части данных и выполняемых кодов во внутренней кэш-памяти. Повышенная производительность сопровождается существенным увеличением потребляемой мощности. В настоящее время технология умножения частоты находит широкое применение практически во всех современных МП. Так фирма Intel выпускает серию МП DX4 (DX4-75,83,100,120). Напряжение питания этих МП 3.3В. Кол-во транзисторов 1.6 млн.

4 Процессоры Pentium

В марте 1995 г. Intel объявила о поставке 66,60МГц версии МП, известного ранее как 586. Эти системы полностью совместимы с МП i86, 286, 386, 486. Новая Микросхема содержит около 3,1 млн. транзисторов и имеет 32-х разрядную адресную и 64-х шину данных, что позволяет обмен данными с системной платой со скоростью 528 Мб/с. В отличие от 486, при производстве которого использовалась КМОП технология, при производстве PentiumIntel применила 0.8 микронную Bi-CSOS технологию. Р166 имеет производительность около 112 MIPS. Суперскалярная архитектура содержит 2 пяти ступенчатых блока исполнения, работающих независимо, и обрабатывающих 2 инструкции за 1 такт синхронизации. Pentium имеет 2 разделённых кеша по 8Кб для команд и данных. Одним из наиболее интересных новшеств является небольшая кэш-память, называемая буфером меток переходов, который позволяет динамически предсказывать переходы в исполняемых программах. По скорости оперирования с плавающей точкой Pentium оставил далеко позади всех своих собратьев по классу. Это достигается благодаря реализации оптимизированных алгоритмов, а также спец. аппаратных блоков сложения, умножения и деления с 8-и ступенчатой конвейеризацией, что позволяет выполнять операции с плавающей точкой за 1 такт. В настоящее время выпускаются версии Pentium с внутренним умножением частоты в 1.5/2 раза (75/50, 90/60, 100/66, 120/60, 133/66). Для снижения рассеиваемой мощности с 13 до 4 Вт напряжение питания снижено до 3,3В. Три режима потребления рассчитаны на максимальный ток в 1A, 50мА, 100мкА. Кол-во выводов возросло до 296. Для производства кристалла стала использоваться 0.6 микронная Bi-CMOS технология. Кол-во транзисторов возросло до 3.3 млн.

1 ноября 1995 года Intel объявила о начале коммерческих поставок МП нового поколения P6, в основе которого лежит комбинация технологии многократного предела ветвления, анализ потоков данных и эмуляция выполняемых инструкций. В корпусе Микросхема размещаются 2 кристалла: 256/512Кб кэш-память 2-го уровня и сам МП. На кристалле процессора располагается 16Кб кеш 1-го уровня. В семейство Р6 входит МП с тактовыми частотами 200, 166, 150 МГц. Производительность Р6 - 200 по тесту производительности соответствует 366, т.e. этот МП превосходит свой аналог в RISC. Число транзисторов МП 5,5 млн. а кеш памяти 31 млн. При напряжении питания около 3В МП вместе с кеш памятью рассеивает 14Вт. Изделие выполнено в квадратном корпусе с 387 выводами. Архитектура Р6 позволяет объединять между собой множество МП создавая таким образом непревзойденную масштабируемость. Специально для Р6Intel разработал 2 набора Микросхема для шины PCI. Развитие линии Р6 пойдет в направлении увеличения тактовой частоты и снижения размеров технических норм, а также увеличения емкость кэша 1-го уровня до 32Кб, кроме того предполагается совершенствование архитектуры с учетом технологии мультимедиа, в частности цифровой обработки видео. Совершенно новый и необычный МП Р7, совместно разработанный Intel и HP, появился в 1997 году. Он поддерживает длинные инструкции и имеет производительность 1млд. MIPS.

5 Производительность процессоров

До недавнего времени основной мерой производительности МП являлась их тактовая частота, однако по мере усложнения архитектуры (RISC-ядро, встроенный кеш, технология внутреннего умножения частоты) данный параметр работы МП хотя и остался одним из важнейших, но уже не был определяющим. В 1992 году Intel предложила индекс для оценки производительности своих МП iCOMP. Индекс представляет собой число, которое выражает производительность МП семейства i86. Производительность 486SX-25 принимается за 100. При вычислении индекса учитываются операции со следующими "взвешенными" компонентами: 16-разрядные целые 57%, 16-р вещественные 13%, 32-р целые 25%, 32-р вещественные 5%.

Таблица индексов iCOMP

Модель iCOMP
486sx2-50 180
486dx4-100 435
P60 510
P166 1308

6 Сопроцессоры

Важной характеристикой любого ПК является его быстродействие. Для ряда компьютерных задач одним из самых критичных параметров выступает скорость выполнения операций с плавающей точкой. Даже самые мощные МП тратят на такие вычисления много времени, поэтому вполне логично было создание для этой цели специальных устройств - Микросхема математического сопроцессора. До недавнего времени сопроцессор представлял собой специализированную микросхему, работающую во взаимодействии с МП. Данная Микросхема была предназначена только для выполнения мат. операций. Во всех МП Intell от 486DX и выше сопроцессор интегрирован на кристалле МП. С другой стороны, хотя и компьютер определяется как "тот, кто вычисляет", масса современных программных приложений вовсе не требует выполнения сложных мат. операций. Если не затрагивать специальных физических или математических задач моделирования, можно однозначно сказать о необходимости сопроцессора для работы с 3-хмерной графикой, издательскими пакетами, электронными таблицами и т.д. При работе же с БД или обычными текстовыми редакторами использование сопроцессор вовсе не обязательно. По некоторым оценкам только 1/3 пользователей эффективно используют математический сопроцессор.

Первым математическим сопроцессором для ПК IBM стал i8087 производства Intell, который появился в 1980 году. Со временем, помимо чисто Intell-x сопроцессоров, появились сопроцессор и ряда других фирм. CYRIX предлагал один из самых быстрых сопроцессоров, основанных на классической архитектуре. Причем гарантировалась полная совместимость с сопроцессорами Intell. Производительность этой микросхемы несколько выше потому, что все критичные по времени выполнения операции реализованы в данной микросхеме с использованием жесткой логики (аппаратный умножитель, отдельное арифметико-логическое устройство для вычисления мантиссы и т.д.). Повышение производительности особенно заметно при вычислении квадратного корня или тригонометрических функций. Он еще и точнее Intell-го.

Weitek была основана в 1981 году несколькими инженерами, покинувшими Intell. Выполнение простых операций с одинарной точностью на сопроцессоре Weitek происходит менее чем за 200 нс., тогда как сопроцессор, использующий классическую архитектуру, выполняет подобные операции за 1.5 мкс. Обращение к сопроцессору происходит как бы через ОЗУ. Таким образом, загрузив операнды в область памяти, соответствующей сопроцессору, следующей командой можно уже считывать результат. Применение сопроцессора Weitek имеет смысл только тогда, когда он поддерживается программным обеспечением. В связи с этим сопроцессор Weitek находит достаточно ограниченное применение.


Список литературы

1. Уинн Л. Рош «Библия по техническому обеспечению Уинна Роша»

2. Н.Н. Щелкунов, А.П. Дианов «Микропроцессорные средства и системы», 1989г

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий