регистрация /  вход

Разработка имитационной модели транспортной сети (стр. 1 из 5)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

Учреждение образования "Гомельский государственный университет имени Франциска Скорины"

Математический факультет

Кафедра МПУ

Разработка имитационной модели транспортной сети

Курсов ая работа

Исполнитель

студентка группы ПМ-44

Бутакова О.В.

Научный руководитель

доцент кафедры МПУ Сукач Е.И.

Гомель 2007

Содержание

Введение

1. Имитационное моделирование для рациональной организации транспортных потоков

1.1 Актуальность использования имитационной модели для исследования потоков в железнодорожной сети

1.2 Описание модели железнодорожной сети

1.3 Алгоритм Форда-Фалкерсона для нахождения максимального потока в сети

1.4 Метод Монте-Карло

2. Имитационная моделЬ железнодорожной сети

2.1 Формализация модели железнодорожной сети

2.2 Алгоритм работы модели железнодорожной сети

2.3 Решение тестовых задач с помощью имитационной модели

Заключение

Список использованных источников

Приложение

Листинг программы

Введение

По причине увеличения транспортных потоков в железнодорожной сети актуальной является проблема их рациональной организации. Однако с учетом влияния различных факторов, таких как загруженность участка дороги, состояния дороги, наличия внутренних потоков, данная задача не может быть решена с помощью аналитических моделей, основанных на графовых моделях.

Поэтому актуальна разработка компьютерных моделей, позволяющих учесть все перечисленные случайные факторы, и рационально организовать потоки в железнодорожной сети.

Для реализации курсовой работы необходимо решить следующие частные задачи:

актуальность использования имитационной модели для исследования потоков транспортной сети;

составление списков входных и выходных параметров имитационной модели железнодорожной транспортной сети;

разработка и реализация алгоритма имитационной модели;

решение тестовых задач с помощью имитационной.

В первой главе представлены: теоретический материал для разработки имитационной модели железнодорожной сети, ее актуальность, алгоритм Форда-Фалкерсона, метод Монте-Карло.

Во второй главе представлены формализация имитационной модель, описание водных и выходных значений, блок-схема алгоритма, тестирование модели и в приложении листинг программы.

1. Имитационное моделирование для рациональной организации транспортных потоков

1.1 Актуальность использования имитационной модели для исследования потоков в железнодорожной сети

В наше время за счёт резкого увеличения числа транспортных средств в сетях дорог существенно возросли требования к рациональной организации транспортных потоков. Сама сеть дорог может быть представлена в виде графа, состоящего из узлов и дуг. Каждое ребро графа, соответствующее участку дороги, характеризуется длиной, пропускной способностью и стоимостью проезда по нему единицы транспортного средства. На пропускную способность ветви графа влияет скорость передвижения единицы транспорта, которая в свою очередь зависит от многих факторов, среди которых наиболее важными являются загруженность участков пути, состояние дорожного покрытия, условия внешней среды. Загруженность на различных участках дороги бывает различной и зависит от наличия внутренних транспортных потоков на данном участке, которые могут рассматриваться как помехи при передвижении транспортной единицы из начального пункта сети в конечный пункт. Состояние дороги определяется её изношенностью, условиями эксплуатации, влиянием погодных условий. Параметры внешней среды изменяются в зависимости от времени года, времени суток и подвержены влиянию погодных воздействий. Значения факторов, определяющих рациональную организацию транспортных потоков в сети, изменяются во времени. Наличие внутренних транспортных потоков на каждом участке сети носит вероятностный характер. Отдельные участки транспортной сети изменяют своё состояние (изнашиваются) с разной интенсивностью. Параметры внешней среды периодически изменяются. При управлении следует учитывать, что в реальной транспортной сети перечисленные факторы являются взаимосвязанными.

При управлении потоками в транспортной сети, как правило, находят оптимальное распределение транспортного потока по ветвям сети, оценивают максимальный поток в сети и находят кратчайший путь между заданными входом и выходом, выявляют узкие места в сети с целью их своевременной ликвидации. Одновременно с этими задачами оценивают суммарные затраты транспортных средств при их движении из начального пункта в конечный.

Наличие случайных факторов, влияющих на состояние транспортной сети, не позволяет решать перечисленные задачи с использованием известного аппарата, основанного на аналитических моделях, называемых графовыми моделями. Особенно большие трудности у исследователей вызывает определение узких мест в сети при наличии транспортных потоков относящихся к различным направлениям и вероятностных внутренних потоков на отдельных участках сети, которые могут приводить к увеличению числа аварий и возникновению “пробок".

Исходя из выше изложенного, в качестве выхода из положения исследователи вынуждены прибегать к имитационному моделированию транспортных потоков в сети дорог с учетом случайных факторов.

1.2 Описание модели железнодорожной сети

Структуру транспортных потоков в железнодорожной сети можно представить в виде графа Gh, где h-вариант организации транспортных потоков в железнодорожной сети. Перевозки в сети реализуются в соответствии со следующими параметрами, определяемыми матрицами:

;
;
;
, (1. 1)

где cij - пропускные способности ветвей графа Gh , соединяющих узел i с узлом j ; lij - расстояния между узлами i и j;

- начальный поток по ветви ij ; qij - стоимость единицы пути движения транспортного средства по ветви ij . Определёно множество входов в сеть
,
и множество выходов из сети
,
в одном направлении. В сети кроме транзитных потоков существуют внутренние транспортные потоки на отдельных отрезках дороги в одну и другую сторону, которые снижают пропускные способности ветвей графа Gh . Величины внутренних транспортных потоков для ij -ых участков определяются функциями распределения
. Пропускные способности ветвей ij графа Gh с учётом внутренних потоков изменяются и представляют собой случайные величины, определяемые с помощью функций распределения
.

В каждом узле железнодорожной сети происходят процессы формирования-расформирования составов. Длительность этих процессов, как правило, носит вероятностный характер и описывается функциями распределения. Функции распределения для каждого i -ого узла сети задаются матрицей

, где каждый элемент матрицы есть функция распределения времени на формирование-расформирование в i -ом узле для состава, пришедшего с узла k и следующего в узел j . Матрица имеет вид:


Дарим 300 рублей на твой реферат!
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Мы дарим вам 300 рублей на первый заказ!