регистрация /  вход

Рішення задач з елементарної математики в пакеті MAPLE-8 (стр. 1 из 3)

Міністерство освіти і науки України

Дніпропетровський національний університет

КОНТРОЛЬНА РОБОТА

з дисципліни „Інформатика”

Рішення задач з елементарної математики в пакеті MAPLE-8

(варіант №7)

Виконав студент групи____________________

______________________

До захисту__________________200 __року

Викладач_______________________________

Дніпропетровськ

2010


Зміст

Вихідні дані завдань варіанту №7

1. Завдання №1

1.1. Задача 1.1 (вар. №7)

1.2. Задача 1.2 (вар. №7)

2. Завдання №2

2.1. Задача 2.1 (вар. №7)

2.2. Задача 2.2 (вар. №7)

3. Завдання №3

3.1. Задача 3.1 (вар. №7)

3.2. Задача 3.2 (вар. №7)

4. Завдання №4

4.1. Задача 4.1 (вар. №7)

4.2. Задача 4.2 (вар. №7)

5. Завдання №5

5.1. Задача 5.1 (вар. №7)

5.2. Задача 5.2 (вар. №7)

6. Завдання №7

6.1. Задача 6.1 (вар. №7)

6.2. Задача 6.2 (вар. №7)

7. Завдання №7

7.1. Задача 7.1 (вар. №7)

7.2. Задача 7.2 (вар. №7)

8. Завдання №8

8.1. Задача 8.1 (вар. №7)

8.2. Задача 8.2 (вар. №7)

9. Завдання №9

9.1. Задача 9.1 (вар. №7)

9.2. Задача 9.2 (вар. №7)

10. Завдання №10

10.1. Задача 10.1 (вар. №7)

10.2. Задача 10.2 (вар. №7)

11. Завдання №11

Список використаної літератури

Вихідні дані завдань варіанту №7

1. Завдання №1

1.1 Задача 1.1 (вар. №7)

Спростити вираз

Розв’язання.

Алгебраїчні перетворення в Maple проводяться за допомогою вбудованих функцій елементарних перетворень таких як simplify - спростити, expand - розкрити дужки, factor -розкласти на множники, normal - привести до спільного знаменника, combine-перетворення ступеня, collect-привести подібні члени, rationalize – позбавитися від ірраціональності в знаменнику.

> (3*x^4-10*a*x^3+22*a^2*x^2-24*a^3+10*a^4)/(x^2-2*a*x+3*a^2);

Позначимо чисельник через u1

> u1:=3*x^4-10*a*x^3+22*a^2*x^2-24*a^3+10*a^4;

Позначимо знаменник через u2

> u2:=x^2-2*a*x+3*a^2;


Спрощуємо знаменник u2: збираємо повний квадрат

> with(student):completesquare(u2,x);

Спрощуємо чисельник u1

> simplify(u1);

Розкладаємо чисельник u1 на множники

> factor(u1);

Перетворюємо степені в чисельнику u1

> combine(u1);

Приводимо подібні члени в чисельнику u1 відносно a

> collect(u1,a);

Приводимо подібні члени в чисельнику u1 відносно x

> collect(u1,x);


Збираємо повний квадрат в числівнику u1

> with(student):completesquare(u1,x);

Відповідь: жодна функція елементарних перетворень simplify, factor, combine, collect, completesquare не працює, тому є всі підстави вважати, що в умову задачі вкралася помилка.

1.2 Задача 1.2 (вар. №7)

Спростити вираз

Розв’язання.

> (sqrt(a)+(b-sqrt(a)*sqrt(b))/(sqrt(a)+sqrt(b)))/(a/ (sqrt(a)* sqrt(b)+b) + b/(sqrt(a)*sqrt(b)-a)-(a+b)/(sqrt(a)*sqrt(b)));

Чисельник дробу позначимо через w1

> w1:=sqrt(a)+(b-sqrt(a)*sqrt(b))/(sqrt(a)+sqrt(b));


Позбавляємося від ірраціональності в чисельнику w1

> w1:=rationalize(w1);

Знаменник дробу позначимо через w2

> w2:=a/(sqrt(a)*sqrt(b)+b)+b/(sqrt(a)*sqrt(b)-a)-(a+b)/a^(1/2)/ b^(1/2);

Позбавляємося від ірраціональності в знаменнику w2

> w2:=rationalize(w2);

Скорочуємо дріб: ділимо чисельник w1 на знаменник w2

> w3:=w1/w2;

Спрощуємо останній вираз і дістаємо відповідь

> simplify(w3);

Відповідь:

2. Завдання №2

2.1 Задача 2.1 (вар. №7)

Спростити вираз, а потім знайти чисельне значення цього виразу при a=1/16,b=1/81

Розв’язання.

> (a-b)/(a^(3/4)+sqrt(a)*b^(1/4))-(a^(1/2)-b^(1/2))/(a^(1/4)+b^(1/4));

Позбавляємося від ірраціональності в знаменниках

>rationalize((-b+a)/(a^(3/4)+sqrt(a)*b^(1/4)))-rationalize((-sqrt(b)+sqrt(a))/(a^(1/4)+b^(1/4))) ;

Приводимо дробі до спільного знаменника (останній результат Maple зберігає під ім’ям %)

> normal(%);


Спрощуємо вираз

> simplify(%);

Підставляємо а=1/16, b=1/81 в останній вираз

> subs(a=1/16,b=1/81,%);

Спрощуємо вираз

> simplify(%);

Відповідь: 2/27.

2.2 Задача 2.2 (вар. №7)

Спростити вираз, а потім знайти чисельне значення цього виразу при x=1/2

Розв’язання.

> (sqrt(2)/(1-x^2)^(-1)+2^(3/2)/x^(-2))/(x^(-2)/(1+x^(-2)));

Спрощуємо останній вираз

> simplify(%);

Підставляємо x=1/2 в останній вираз

> subs(x=1/2,%);

Відповідь:

3. Завдання №3

3.1 Задача 3.1 (вар. №7)

Скоротити наступну дріб

Розв’язання.

>(a^2+6*a-91)/(a^2+8*a-105);

Позначимо чисельник дробу через а1

> a1:=a^2+6*a-91;

Розкладаємо чисельник на множники

> a1:=factor(a1);

Позначимо знаменник дробу через а2

> a2:=a^2+8*a-105;


Розкладаємо знаменник на множники

> a2:=factor(a2);

> a3:=a1/a2;

Відповідь:

3.2 Задача 3.2 (вар. №7)

Скоротити наступну дріб

Розв’язання.

>(x*sqrt(y)-y*sqrt(x))/(sqrt(x)-sqrt(y))/(sqrt(x)*sqrt(y));

Позбавляємося від ірраціональності в знаменнику

> rationalize(%);


Розкриваємо дужки

> expand(%);

Спрощуємо вираз

> simplify(%);

Відповідь: 1.

4. Завдання №4

4.1 Задача 4.1 (вар. №7)

Розв’язати рівняння 1-й степені

Вбудована функція, призначена для розв'язань рівнянь і нерівностей, має вигляд: >solve(рівняння або нерівність, змінна);

Розв’язання.

>(7*x+4)/5-x=abs((3*x-5)/2);