Смекни!
smekni.com

Модель дослідження стійкості та якості перехідних процесів слідкувальної системи (стр. 1 из 6)

ЗМІСТ

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

ВСТУП

1. ТЕОРЕТИЧНІ ЗАСАДИ СИСТЕМНОГО АНАЛІЗУ ОБ‘ЄКТІВ ТА ПРОЦЕСІВ КОМП‘ЮТЕРІЗАЦІЇ

1.1 Задачі системного управління структурою і властивостями складних об'єктів

1.2 Аналіз вимог до точності та стійкості слідкувальної системи

1.3 Аналіз інформаційних процесів предметної області дослідження

2. МОДЕЛЬ ДОСЛІДЖЕННЯ СТІЙКОСТІ ТА ЯКОСТІ ПЕРЕХІДНИХ ПРОЦЕСІВ СЛІДКУВАЛЬНОЇ СИСТЕМИ

2.1 Технічне завдання

2.2 Функціональна схема та математична модель слідкувальної системи

2.3 Розробка алгоритмів визначення стійкості та якості перехідних процесів слідку вальної системи

3. ПРОГРАМНЕ ЗАБЕЗПЕЧЕННЯ МОДЕЛІ ДОСЛІДЖЕННЯ СТІЙКОСТІ ТА ЯКОСТІ ПЕРЕХІДНИХ ПРОЦЕСІВ СЛІДКУВАЛЬНОЇ СИСТЕМИ

3.1 Програмний комплекс системи

3.2 Перевірка роботи моделі дослідження стійкості та якості перехідних процесів слідкувальної системи в пакеті інженерних розранках Matlab в додатку Simulink і Control System Toolbox

ВИСНОВКИ

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

ДОДАТКИ


РЕФЕРАТ

Робота присвячена розробці інформаційно-довідкової підсистеми класифікації космічних апаратів і складається з трьох розділів.

Перший розділ присвячений теоретичним засадам системного аналізу об‘єктів та процесів комп‘ютеризації. Розглянуто задачі системного управління структурою і властивостями складних об'єктів. Проведено аналіз аналіз інформаційно-довідкових підсистем та аналіз інформаційних процесів предметної області дослідження.

В другому розділі сформульоване технічне завдання на розробку підсистеми, вказано вимоги до роботи системи, виконано формалізований опис процесів обробки інформації, наведено дерево цілей, в програмному середовищі Microsoft Office Access 2007.

Третій розділ присвячений реалізації прототипу підсистеми із використанням програмного комплексу C++ Builder 6. Спроектовано інтерфейс системи, а також відбулася перевірка роботи моделі дослідження стійкості та якості перехідних процесів слідкувальної системи в пакеті інженерних розранках Matlab в додатку Simulink і Control System Toolbox.

Робота складається з трьох розділів, виконана на сторінках та містить … рисунки та … посилань на літературу.

ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ

КП - керований процес

САУ - систем автоматичного управління

ОУ - об'єкт управління

АФХ – амплітудно-фазова характеристика

ЛАХ – логарифмічно-амплітудна характеристика


ВСТУП

Ракетно-космічна галузь - одна з небагатьох галузей, в яких Україна перебуває серед світових лідерів. Збереження Україною статусу космічної держави в умовах жорсткої конкуренції на світовому ринку прямо пов'язане з виробництвом високоякісної ракетної техніки, зі створенням у найкоротший термін дешевих космічних літальних апаратів (КА) з високими показниками рішення цільової задачі.

Метою даної курсової роботи є побудова моделі дослідження стійкості та якості перехідних процесів слідкувальної системи.

Завданням курсової роботи є:

– аналіз моделей управління підсистеми слідкувального приводу;

– проектування формалізованої моделі системи;

– розробка математичної моделі;

– розробка програмного комплексу системи;

Предметом дослідження є застосування системного підходу для проектування складних автоматизованих систем.

Об’єктом дослідження є аналіз методів дослідження стійкості та якості перехідних процесів слідкувальної системи.

В процесі розробки курсової роботи було використано аналітичні, математичні, графічні методи, методи об’єктно – орієнтованого проектування та програмування.


1. Теоретичні засади системного аналізу об’єктів та процесів комп’ютеризації

1.1 Задачі системного управління структурою і властивостями складних об'єктів

Особливості задач управління структурою і властивостями складних об'єктів. Перейдемо до вивчення властивостей та особливостей задач управління структурою і властивостями складних об'єктів. Передусім потрібно виявити фактори, що зумовлюють потребу створення і використання складніших класів задач управління об'єктами.

До розглянутих вище задач управління працездатністю і безпекою належать задачі управління складними об'єктами різного призначення за умов штатного режиму функціонування. Але водночас цей клас задач має певні обмеження. Ці обмеження випливають з математичного формулювання задач оптимального управління, в якій не враховано цілу низку практично важливих факторів, то належать до реальних умов функціонування сучасних складних систем. Зокрема, недостатньо враховано реальні взаємодії об'єкта і зовнішнього середовища, наприклад, такі важливі особливості, як неповнота, невизначеність і неточність вихідної інформації, запізнення інформації, інерційність і запізнення управління, не марковість процесу зміни стану об'єкта.

У математичному формулюванні задачі трактування терміна «оптимальний» є досить вузьким і не враховує реальну множинність, невизначеність і суперечливість цілей. Не враховано можливості таких змін умов функціонування об'єкта, що призводять до позаштатної або критичної ситуації. Зокрема, не враховано зовнішні нестаціонарні збурювальні сили, які впливають на рухомий об'єкт в атмосфері і зумовлені не прогнозованими значними варіаціями густини і температури атмосфери, потужними турбулентними рухами повітря, особливо на межі атмосферних фронтів циклону й антициклону, а також відмінністю аеродинамічних реальних властивостей від розрахункових. Ці фактори вносять невизначеність у характеристики сил, які реально впливають на керований об'єкт. Математично ця невизначеність виражається невизначеністю правих частин диференціальних рівнянь, що описують рух керованого об'єкта. Така невизначеність не гарантує можливості виконання обмежень на стан і управління, визначених співвідношеннями, а отже, не дає: змоги гарантувати у складних умовах штатний режим функціонування об'єкта, визначений співвідношенням. Отже, математичний і методичний апарат, який використовують для розв'язання задач управління класу У1, орієнтований на досить вузький клас детермінованих вихідних даних і не враховує багато реальних умов і ситуацій, характерних для прикладних задач управління. [1]

Ці недоліки враховано у класах задач управління вищих рівнів, зокрема в задачах, пов'язаних із необхідністю управління властивостями і структурою складних об'єктів. Насамперед розглянемо деякі прийоми усунення неповноти, невизначеності і неточності вихідної інформації в системах управління. У реальних умовах проектування систем управління складними об'єктами недостатній рівень інформованості ОІІР може бути зумовлений різними причинами. Найхарактернішими є такі ситуації.

Ситуація 1. На етапі проектування системи управління може виявитися, що частково або повністю невідомо властивості і показники зовнішніх впливів па керований об'єкт, і тому практично невідомо багато показників системи управління. Подібні ситуації були характерні під час створення космічних апаратів різного призначення.

Зокрема. під час створення місяцехода відомості про зовнішнє середовище практично були відсутні. Відомою, власне кажучи, була тільки одна властивість — відсутність атмосфери. А головних відомостей - якими є місячний грунт, які його механічні, фізичні, хімічні та інші властивості і показники - не було. За таких умов до системи управління ставлять вимоги, що принципово відрізняються від прийнятих під час розробки систем управління класу У1.

Зокрема, система управління повинна відповідати принципово новій вимозі, відсутній у системах управління класу У1. Суть її полягає в тому, що у процесі функціонування система управління повинна заповнити відсутню інформацію про зовнішнє середовище і на цій основі здійснити рішення про адекватну зміну параметрів, властивостей і структури керованого об'єкта. Отже, від системи управління в цьому випадку потрібно, щоб вона могла у процесі функціонування одночасно виконувати функції управління класу У1 (зміни параметрів стану), класу У2 (зміни властивостей) і класу УЗ (зміни структури). При цьому процедури зміни властивостей і структури можуть бути одноразовими і багаторазовими.

У випадку реалізації одноразової процедури система управління працює в такому режимі: заповнює відсутню інформацію, виконує корекцію властивостей і структури об'єкта Таку процедуру виконують за умови, що характеристики зовнішнього середовища залишаються практично незмінними упродовж всього терміну функціонування керованого об'єкта Цей варіант процедури характерний, зокрема, для використання певних типів всюдиходів у складних кліматичних умовах (болото, пісок, твердий грунт, в'язкий грунт тощо). Як приклад можна навести роботу всюдиходів у різні пори року у Заполяр'ї. [1]

Ситуація 2. Є досить точні первинні відомості про властивості навколишнього середовища і про керований об'єкт, на підставі яких можна створити систему управління. Однак у процесі функціонування керованого об'єкта властивості середовища або об'єкта можуть змінюватися у досить широкому діапазоні внаслідок впливу різних факторів Наприклад, у літальному апараті у процесі польоту в міру витрати пального змінюються його маса і розташування центра ваги. Одночасно зі зміною висоти польоту змінюється густина атмосфери і. як наслідок, - аеродинамічні властивості. Зазначені зміни властивостей об'єкта, а також нестаціонарні турбулентні процеси в атмосфері можуть призвести до того, що система управління, спроектована на підставі вихідної інформації, не забезпечить у процесі зміни властивостей керованого об'єкта і навколишнього середовища необхідних якісних показників функціонування об'єкта За таких умов виникає необхідність забезпечити постійну зміну його властивостей і структури, адекватну зміні зовнішніх впливів. Така система управління повинна забезпечити необхідні якісні показники функціонування об'єкта у будь-який момент наявної ситуації.