Смекни!
smekni.com

Система навигации мобильного робота (стр. 1 из 7)

ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ, ЕДИНИЦ СОКРАЩЕНИЙ И ТЕРМИНОВ

GPS – глобальная система позиционирования (Global Positioning System)

ИМР – интеллектуальный мобильный робот

МР – мобильный робот

МРИЧС – мобильный робот для использования в чрезвычайных ситуациях

ПК – персональный компьютер

САПР – система автоматизированого проектирования

СП – сенсорная подсистема

СУ – система управления

ЧПУ – числовое программное управление

ЭВМ – электронно- вычислительная машина


ВВЕДЕНИЕ

Роботы – автоматические системы, предназначенные для воспроизведения двигательных и интеллектуальных функций человека. От традиционных автоматов отличаются большей универсальностью и способностью адаптации на выполнение различных задач, в том числе в изменяющейся обстановке.

В настоящее время робототехника превратилась в развитую отрасль промышленности: тысячи роботов работают на различных предприятиях мира, подводные манипуляторы стали непременной принадлежностью подводных исследовательских и спасательных аппаратов, изучение космоса опирается на широкое использование роботов с различным уровнем интеллекта. Особенное внимание уделяется автоматизации тяжелых, вредных, утомительных и монотонных работ в различных отраслях с помощью роботов-манипуляторов.

Однако сегодня у специалистов в области робототехники возникают примерно те же трудности, что и 30 лет назад у разработчиков ЭВМ. Из-за отсутствия общих стандартов и платформ создателям роботов приходится начинать разработку каждого нового творения практически с нуля.

Все же, несмотря на все сложности, те, кто занят в сфере робототехники, от профессоров до предпринимателей и студентов, полны энтузиазма, напоминающего о поре создания Microsoft, когда создатели искали пути развития новых технологий и мечтали, чтобы компьютеры были доступны каждому. И сегодня, анализируя тенденции развития робототехники, можно представить будущее, где роботы станут незаменимыми помощниками людей в их повседневной жизни. Возможно, человечество находится на пороге новой эры, когда персональные компьютеры сойдут со столов и позволят нам видеть, слышать, осязать и, возможно даже, манипулировать предметами на расстоянии.

Сейчас разработчики систем с использованием искусственного интеллекта могут оснастить свои творения системой навигации GPS, видеокамерами и множеством дополнительных детекторов, в результате чего возможности современных роботов увеличиваются.

Связь домашних роботов и персональных компьютеров облегчит жизнь человеку (Приложение А). Например, офисный служащий следит за охраной своего дома, уборкой, раскладыванием выстиранного белья, контролируя работу домашних роботов на экране своего ПК. Кроме того, роботы смогут обмениваться информацией между собой и домашним компьютером [1].

Целью данной работы является определение задач и разработка структурной схемы системы навигации мобильного робота.

Для успешной навигации в пространстве система робота должна уметь строить маршрут, управлять параметрами движения (задавать угол поворота колес и скорость их вращения), правильно интерпретировать сведения об окружающем мире, получаемые от датчиков, и постоянно отслеживать собственные координаты.

Компьютерные системы построения маршрута разработаны достаточно хорошо. Первоначально они создавались для простейших виртуальных сред, и программа, моделирующая действия робота, быстро находила оптимальный путь к цели в двумерных лабиринтах и комнатах, наполненных простыми препятствиями. Когда появились быстрые процессоры, стало возможным формировать траекторию движения уже на сложных трехмерных картах, причем в реальном времени [2].


1 АНАЛИЗ ТРЕБОВАНИЙ ТЕХНИЧЕСКОГО ЗАДАНИЯ

Современная робототехника возникла в 60-е - 70-е годы прошлого столетия как ответ на запросы комплексной автоматизации, когда в результате соединения управляемых человеком манипуляторов с системами ЧПУ станков и другого технологического оборудования появились автоматические машины принципиально нового типа. Это были роботы с программным управлением - роботы первого поколения.

Успехи применения первых роботов вызвали быстрый рост потребностей в них и соответственно требований к их возможностям. Стали развиваться роботы с комбинированным управлением, в которых программное управление дополняется управлением от человека-оператора - роботы промежуточного 1,5-го поколения с супервизорным, а затем интерактивным управлением.

В те годы только первые шаги начала делать теория адаптивного управления. И одними из первых машин с таким управлением стали адаптивные роботы. Это роботы второго поколения, оснащенные сенсорикой.

По мере развития систем адаптивного управления в них стали применяться методы искусственного интеллекта. Когда эти технологии заняли определяющее положение в алгоритмическом обеспечении систем управления, сформировалось новое, третье поколение роботов - интеллектуальные роботы [3].

Целью данной работы является разработка структурной схемы системы навигации мобильного робота.

Для реализации поставленной задачи необходимо:

а) провести анализ различных видов навигации;

б) составить карту местности;

в) произвести коррекцию траектории движения робота;

г) спланировать оптимальный маршрут движения, ведущего к цели;

д) реализовать управление локальными перемещениями по выработанному маршруту;

е) реализовать обход дополнительно выявляемых в ходе движения препятствий и опасных мест.

В качестве мобильного робота в данной работе берется мобильный робот для использования в чрезвычайных ситуациях (МРИЧС), общий вид которого представлен в приложении Б.

Назначение робота – инспекция территорий, зараженных химическими веществами или находящихся под угрозой заражения, работа в условиях сильной задымленности во время тушения пожара, самостоятельное патрулирование назначенных территорий, взятие проб, передача телеметрической и визуальной информации о состоянии объекта.

Система управления робота и программное обеспечение имеют модульную структуру, допускают модернизацию и расширение в части доработок, обеспечение помехоустойчивости, тестирования повышения надежности, самодиагностики, а также выполнения дополнительных функций и улучшения других тактико-технических характеристик.

Управление роботом осуществляется автономной СУ (бортовым компьютером) или по радио с помощью телерадиомодуля или по кабелю. СУ объединена с подсистемами датчиков, управления и связи [4].

навигация робот искусственный интеллект

2 АНАЛИЗ ПРЕДМЕТНОЙ ОБЛАСТИ ПРОЕКТИРОВАНИЯ СИСТЕМЫ НАВИГАЦИИ

Робототехника - область науки и техники, ориентированная на создание роботов и робототехнических систем, предназначенных для автоматизации сложных технологических процессов и операций, в том числе, выполняемых в неопределённых условиях, для замены человека при выполнении тяжелых, утомительных и опасных работ.

Далеко не всегда условия окружающей среды позволяют человеку выполнять то или иное действие непосредственно. Это может быть работа со взрывоопасными материалами, отравляющими веществами, пожаротушение и многие другие задачи. В таких ситуациях на помощь человеку приходят мобильные роботы для использования в чрезвычайных ситуациях.

МР имеет ряд сенсоров для восприятия окружающей его среды, ряд исполнительных устройств (эффекторов) для воздействия на среду и систему управления, которая позволяет роботу совершать целенаправленные и полезные действия (рисунок 2.1).

Рисунок 2.1 – Базовые элементы всех роботизированных систем

МРИЧС использует дистанционные датчики, датчики температуры, датчики химических веществ, датчики радиации и др. для восприятия окружающей его среды, а также двигательные устройства в качестве эффекторов для воздействия на среду.


Рисунок 2.2 – Замкнутая кольцевая система во взаимодействии с окружающей средой

В замкнутой кольцевой системе сенсоры возбуждают систему управления, в зависимости от изменений в окружающей среде (рис. 2.2). В другом случае действует так называемая обратная связь. Если система управления определяет действие, которое изменяет среду, сенсоры подтверждают данное изменение, отправляя информацию о новом состоянии окружающей среды в систему управления [5].

Применение МРИЧС позволяет исключить угрозу здоровью и жизни человека-оператора. Таким образом, актуальной является проблема создания мобильных роботов, обладающих способностями к самостоятельному передвижению и автоматическому выполнению поставленных задач. Важную роль при этом играет создание системы навигации, позволяющей составлять карту среды, в которой функционирует МР, планировать маршрут, ведущий к цели и обход препятствий, встречающихся на пути.

В настоящее время в большинстве случаев управление роботом осуществляет человек-оператор на уровне движений, при этом от человека требуется непрерывное наблюдение за роботом и оперативное управление его действиями. Такой подход определяется неспособностью робота принимать самостоятельные решения и имеет ряд недостатков. К ним можно отнести необходимость организации и постоянной поддержки канала связи с человеком-оператором (кабельная связь или радиосвязь), что существенно ограничивает область применения робота.

При выполнении технологических операций оператор, получая от системы технического зрения информацию об объекте и процессе выполняемых работ, непрерывно осуществляет ручное управление исполнительными механизмами манипулятора и транспортного средства. Сложный процесс управления в сочетании с характером выполняемых работ, требующих повышенного внимания и осторожности, приводит к быстрой утомляемости оператора и, как следствие, увеличению вероятности ошибочных действий. Кроме того, человек не всегда может правильно оценить обстановку по данным телеметрии и осуществить адекватное управление. Указанных недостатков можно избежать, если управление со стороны человека-оператора будет проводиться не на уровне задания отдельных движений, а на уровне постановки цели. В этом случае робот должен самостоятельно (или при минимальном участии человека) выполнять поставленные задачи [6].