Проблема искусственного интеллекта (стр. 1 из 3)

Содержание

Содержание................................................................................................................................................................................ 1

Введение....................................................................................................................................................................................... 2

Механический подход. ................................................................................................................... 2

Электронный подход. ..................................................................................................................... 3

Кибернетический подход. ............................................................................................................... 4

Нейронный подход. ........................................................................................................................ 4

Появление перцептрона. ................................................................................................................ 5

Искусственный интеллект и теоретические проблемы психологии. ............................................ 5

Заключение............................................................................................................................................................................... 7

Литература:................................................................................................................................................................................ 7

Введение

С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.

Терпеливо продвигаясь вперед в своем нелегком труде, исследователи, работающие в области искусственного интеллекта (ИИ), обнаружили, что вступили в схватку с весьма запутанными проблемами, далеко выходя­щими за пределы традиционной информатики. Оказалось, что прежде всего необходимо понять механизмы процесса обучения, природу языка и чувс­твенного восприятия. И тогда многие исследователи пришли к выводу, что пожалуй самая трудная проблема, стоящая перед современной наукой - познание процессов функционирования человеческого разума, а не просто имитация его работы. Что непосредственно затраги­вало фундаментальные теоретические проблемы психологической науки. В самом деле, ученым трудно даже прийти к единой точке зрения относи­тельно самого предмета их исследований - интеллекта.

Некоторые считают, что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и ана­логиям; третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого.

Механический подход.

Идея создания мыслящих машин "человеческого типа", которые каза­лось бы думают, двигаются, слышат , говорят, и вообще ведут себя как живые люди уходит корнями в глубокое прошлое. Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, кото­рые жестикулировали и изрекали пророчества (разумеется не без помощи жрецов). В средние века и даже позднее ходили слухи о том, что у кого-то из мудрецов есть гомункулы (маленькие искусственные человечки) - настоящие живые, спо­собные чувствовать существа. Выдающийся швейцарский врач и естествоис­пытатель XVI в Теофраст Бомбаст фон Гогенгейм (более известный под именем Парацельс) оставил руководство по изготовлению гомункула, в ко­тором описывалась странная процедура, начинавшаяся с закапывания в ло­шадиный навоз герметично закупоренной человеческой спермы. "Мы будем как боги, - провозглашал Парацельс. - Мы повторим величайшее из чудес господних - сотворение человека!".

В XVIII в. благодаря развитию техники, особенно разработке часо­вых механизмов, интерес к подобным изобретениям возрос, хотя результа­ты были гораздо более "игрушечными", чем это хотелось бы Парацельсу. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор, служивший при дворе Франциска I, сконструировал серию машин, которые умели держать перо и могли писать довольно длинные тексты.

Успехи механики XIX в. стимулировали еще более честолюбивые за­мыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж заду­мал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной; как утверждал Бэббидж, его машина в принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 г., ди­ректор одного из испанских технических институтов Леонардо Тор­рес-и-Кеведо действительно из готовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хоро­шо, как и человек.

Электронный подход.

Однако только после второй мировой войны появились устройства, казалось бы, подходящие для достижения заветной цели - моделирования разумного поведения; это были электронные цифровые вычислительные ма­шины. "Электронный мозг", как тогда восторженно называли компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты прези­дентских выборов за несколько часов до получения окончательных данных. Этот "подвиг" компьютера лишь подтвердил вывод, к которому в то время пришли многие ученые: наступит тот день, когда автоматические вычисли­тели, столь быстро, неутомимо и безошибочно выполняющие автоматические действия, смогут имитировать невычислительные процессы, свойственные человеческому мышлению, в том числе восприятие и обучение, распознава­ние образов, понимание повседневной речи и письма, принятие решений в неопределенных ситуациях, когда известны не все факты.

Многие изобретатели компьютеров и первые программисты развлека­лись составляя программы для отнюдь не технических занятий, как сочи­нение музыки, решение головоломок и игры, на первом месте здесь оказа­лись шашки и шахматы. Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.

К концу 50-х годов все эти увлечения выделились в новую более или менее самостоятельную ветвь информатики, получившую название "искусс­твенный интеллект". Исследования в области ИИ, первоначально сосредо­точенные в нескольких университетских центрах США - Массачусетском технологическом институте, Технологическом институте Карнеги в Питт­сбурге, Станфордском университете, - ныне ведутся во многих других университетах и корпорациях США и других стран. В общем исследователей ИИ, работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука и для них компьютер - лишь инс­трумент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить поль­зование ими. Многие представители второй группы мало заботятся о выяс­нении механизма мышления - они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.

В настоящее время, однако, обнаружилось, что как научные так и технические поиски столкнулись с несоизмеримо более серьезными трудно­стями, чем представлялось первым энтузиастам. На первых порах многие пионеры ИИ верили, что через какой-нибудь десяток лет машины машины обретут высочайшие человеческие таланты. Предполагалось, что преодолев период "электронного детства" и обучившись в библиотеках всего мира, хитроумные компьютеры, благодаря быстродействию точности и безотказной памяти постепенно превзойдут своих создателей-людей. Сейчас мало кто говорит об этом, а если и говорит, то отнюдь не считает, что подобные чудеса не за горами.

Несмотря на многообещающие перспективы, ни одну из разработанных до сих пор программ ИИ нельзя назвать "разумной" в обычном понимании этого слова. Это объясняется тем, что все они узко специализированы; самые сложные экспертные системы по своим возможностям скорее напоми­нают дрессированных или механических кукол, нежели человека с его гиб­ким умом и широким кругозором. Даже среди исследователей ИИ теперь многие сомневаются, что большинство подобных изделий принесет сущест­венную пользу. Немало критиков ИИ считают, что такого рода ограничения вообще непреодолимы.

К числу таких скептиков относится и Хьюберт Дрейфус, профессор философии Калифорнийского университета в Беркли. С его точки зрения, истинный разум невозможно отделить от его человеческой основы, заклю­ченной в человеческом организме. "Цифровой компьютер - не человек, ­говорит Дрейфус. - У компьютера нет ни тела, ни эмоций, ни потребнос­тей. Он лишен социальной ориентации, которая приобретается жизнью в обществе, а именно она делает поведение разумным. Я не хочу сказать, что компьютеры не могут быть разумными. Но цифровые компьютеры, зап­рограммированные фактами и правилами из нашей, человеческой, жизни, действительно не могут стать разумными.

Кибернетический подход.

Попытки построить машины, способные к разумному поведению, в зна­чительной мере вдохновлены идеями профессора МТИ Норберта Винера. Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнес­ти к той или иной конкретной дисциплины. Они лежат где-то на стыке на­ук, поэтому к ним обычно не подходят столь строго. Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа "обратной связи", который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип обратной связи заключается в использовании информации, поступающей из окружающего ми­ра, для изменения поведения машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигна­лов они соответственно изменяли наводку орудий, то есть - заметив по­пытку отклонения самолета от курса, они тотчас расчитывали его даль­нейший путь и направляли орудия так, чтобы траектории снарядов и само­летов пересеклись.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.