Смекни!
smekni.com

Расчет кабеля Р-4 (стр. 2 из 3)

[Ф/км]

Норма:

[нФ/км]

Вывод: полученный результат удовлетворяет норме

1.4 Расчет проводимости изоляции цепей линии связи

Проводимость изоляции – зависит от сопротивления изоляции по постоянному току и от диэлектрических потерь в изолирующем материале при переменном токе. В соответствии с этом проводимость равна:

(1.4.1)

где

- проводимость изоляции при постоянном токе – величина, обратная сопротивлению изоляции ( для П-4 Rиз=5000 МОм); Gf – проводимость изоляции при переменном токе обусловленная диэлектрическими потерями.

[Сим/км] (1.4.2)

где

- тангенс учла динамических потерь
=2*10-4

Сопротивление изоляции жил кабельных линий связи составляет значительную величину. Следовательно G0 по сравнению с Gf, мала, и ей пренебрегают. Отсюда проводимость изоляции кабельной цепи равна:

[Сим/км] (1.4.3)

(1.4.4)

f,кГц

,рад*10-3

Gf, Сим/км*10-7

G, Сим/км*10-7

10

62.8

6.28

6.28

60

376.8

37.68

37.68

110

690.8

69.08

69.08

180

1130.4

113.04

113.04

250

1570.2

157.00

157.00

Пример расчета:

Gf=62.8*103*0.05*10-6*2*10-4 (Сим/км)

Норма:

(мкСим/км)

Вывод: данный параметр удовлетворяет норме.

2. Расчет вторичных параметров

К вторичным параметрам относятся:

- коэффициент затухания;

- коэффициент фазы;

Zв – волновое сопротивление;

t – время распространения;

U – скорость распространения;

2.1 Расчет коэффициента затухания

Коэффициент затухания определяется по формуле:

[Неп/км] (2.1.1)

Для определения коэффициента затухания для заданной температуре необходима формула:

[Неп/км] (2.1.2)

где

- коэффициент затухания при t=+200C;

- температурный коэффициент затухания;

t - заданная температура.

Температурный коэффициент имеет сложную зависимость от частоты, а также от конструкции кабеля. Поэтому при расчетах пользуются экспериментальными значениями

, которые приведены в таблице.

f,кГц

R,Ом/км

G, Сим/км*10-7

,Неп/км

*10-3

, Неп/км

10

68.4

6.28

0.21

2.7

0.18

60

74.0

37.68

0.25

2.5

0.22

110

91.4

69.08

0.28

1.9

0.26

180

116.7

113.04

0.36

1.8

0.33

250

142.2

157.00

0.44

1.6

0.41

Пример расчета:

Рассчитаем

=
( Неп/км)

По заданным имеющимся значениям

рассчитаем
для температуры –160С

=0.21(1+2.7*10-3*(-36))=0.189 (Неп/км)

Вывод: полученные значения соответствуют теоретическим.


2.2 Расчет коэффициента фазы

Коэффициент фазы рассчитывается по формуле:

[рад/км] (2.2.1)

Значение коэффициента фазы

как видно из формулы, увеличивается прямо пропорционально частоте исключение составляют сравнительно низкие частоты, при которых
определяется по другим формулам.

F,кГц

,рад*10-3

L *10-3,Гн/км

,рад/км

10

62.8

1.29

0.05

60

376.8

1.26

2.90

110

690.8

1.26

5.49

180

1130.4

1.23

8.87

250

1570.2

1.21

12.21

Пример расчета:

( рад/км)

Вывод: значение полученного параметра соответствует норме.

2.3 Расчет скорости распространения

Скорость распространения определяется по формуле:

[км/с] (2.3.1)

Пример расчета

( км/с)

2.4 Расчет времени распространения

Время распространения величина обратная скорости распространения:

[мкс] (2.4.1)

Пример расчета

( мкс)

2.5 Расчет волнового сопротивления

Волновое сопротивление определяется по формуле

[Ом] (2.5.1)

Пример расчета

( Ом)

f,кГц

L *10-3,Гн/км

U, км/с

t, мкс

Zв, Ом

10

1.29

124514.5

8.03

160.6

60

1.26

125992.1

7.93

158.7

110

1.26

126438.1

7.91

158.2

180

1.23

127369.1

7.85

157.0

250

1.21

128564.8

7.77

155.5

Вывод по работе

1) Рассчитали первичные и вторичные параметры легкого полевого кабеля П-4. Полученные результаты соответствуют теоретическим. Данный полевой кабель можно эксплуатировать в указанных условиях