Смекни!
smekni.com

Методы и средства отображения информации (стр. 2 из 4)

Конструкция запоминающей ЭЛТ схематично представлена на рис. 4. Запоминающая поверхность состоит из тонкой металлической сетки, на которую со стороны экрана осажден слой диэлектрика. Внутри колбы размещены две электронные пушки: записывающая, которая формирует модулируемый и адресуемый отклоняющей системой высокоэнергетический пучок, и воспроизводящая, в которой создается интенсивный расходящийся пучок электронов с невысокой энергией. Специальные кольцевые электроды, расположенные на стенках трубки и находящиеся под определенным потенциалом, создают электростатическое поле, благодаря которому медленные электроны двигаются перпендикулярно мишени, равномерно распределяясь по ее поверхности.

Рис. 4. Схематическое изображение конструкции запоминающей трубки:

ЗП – записывающая пушка; ВП – воспроизводящая пушка; ОК – отклоняющие катушки; К – коллекторная сетка; С – сетка мишени; Д – диэлектрик; КЭ – кольцевые электроды; АЭ – алюминированный экран.

Основным преимуществом запоминающей ЭЛТ является простота индикаторов, создаваемых на их базе отсутствие мерцания и высокая яркость. Разрешающая способность экрана в них также достаточно высока и определяется размером и количеством отверстий в сетке мишени. Однако важным недостатком индикаторов на запоминающих трубках, ограничивающим их использование во многих областях, является невозможность избирательного стирания информации. Применяются они в основном в качестве устройства вывода графических данных из машины и в радиолокационных системах.

Электролюминесцентное излучение возникает в результате приложения электрического поля к люминофорному материалу. Интенсивность излучения зависит от напряженности ноля, а также часто ты его изменения, если поле переменное. Свечение связано с ускорением движения носителей зарядов в люминофоре, для чего требуется достаточно высокая напряженность поля (порядка 103- 106 В/см). Наиболее распространенным люминофором является сульфид цинка (ZnS) с примесями меди, марганца и некоторых других элементов. От типа люминофора и количества примесей зависим цвет излучения, перекрывающий практически всю видимую область спектра.

Распространение в области отображения информации получили два основных типа электролюминесцентных индикаторов (ЭЛИ): построенных на основе порошковых люминофоров, возбуждаемых постоянным напряжением, и с использованием люминофоров в виде тонкой пленки, возбуждаемых высокочастотным переменным напряжением.

Основой электролюминесцентного элемента постоянного тока является порошкообразный люминофор, кристаллы которого вместе с примесями распределены в связующем веществе. Этот состав наносят на прозрачную пластину с проводящим покрытием (обычно используется слой оксида олова). С другой стороны к люминофору прикладывают тонкую металлическую пластину (фольгу). Вся конструкция размещена в пластмассовом корпусе и герметизирована (рис. 5.).

Рис. 5. Конструкция электролюминесцентного элемента постоянного тока:

1 – люминофорный слой; 2 – металлический электрод; 3 – выводные контакты; 4 – герметический корпус; 5 – прозрачный электрод (

); 6 – стеклянная подложка

Важным преимуществом электролюминесцентных элементов является их малая толщина, позволяющая конструировать компактные индикаторы. Управляются они напряжениями порядка 50 — 100 В, однако по яркости и контрастности уступают многим другим типам излучающих элементов.

В среднем для ЭЛИ постоянного тока при питающем напряжении около 100 В яркость свечения составляет примерно 300 кд/м2. Характерным для этих элементов является уменьшение их световой Мощности в процессе эксплуатации, что связано с миграцией примесей в люминофоре в зонах контакта с электродом. Срок службы элементов может быть увеличен, если осуществить их питание импульсным напряжением. Отметим также важную для некоторых применений способность ЭЛИ менять цвет излучения в зависимости от приложенного напряжения.

Тонкопленочные индикаторы переменного тока являются наиболее перспективными приборами, реализующими принцип электролюминесценции. Слой люминофора размещают между слоями диэлектрика, обеспечивающими гальваническое разделение его с электродами (рис. 6.). Все слои создаются с помощью технологии напыления в вакууме на стеклянную подложку. Долговечность таких ЭЛИ значительно выше, чем порошковых, питающее их высокочастотное напряжение составляет 150 — 250 В.

Рис. 6. Структура слоев тонкопленочного электролюминесцентного индикатора переменного тока:

1 – прозрачный электрод; 2 – пленка люминофора; 3 – металлический электрод; 4 – светопоглощающий диэлектрик; 5 – прозрачный диэлектрик; 6 – стеклянная подложка

1.3. Светодиодные индикаторы

Светоизлучающие диоды (СИД) представляют собой твердотельные приборы, работающие на р-п-переходах, образованных в полупроводниковом материале. В их основе лежит принцип инжекционной люминесценции. Эксплуатационные достоинства СИД способствовали их широкому использованию в вычислительной и другой аппаратуре в качестве дискретных индикаторов.

Рассмотрим коротко физические основы работы светоизлучающих диодов. Известно, что в полупроводниках внешние оболочки атомов, создающих кристаллическую структуру, в результате значительного сближения образуют определенные энергетические зоны. В так называемой валентной зоне располагаются электроны, обеспечивающие связь атомов в кристалле. Отдельные электроны под воздействием тепловой энергии могут переходить в другую зону, называемую зоной проводимости. При этом переходе образуется свободное энергетическое состояние, получившее название дырка. Электроны и дырки рассматриваются как частицы, имеющие соответственно отрицательный и положительный заряды. Введение в материал полупроводника определенных примесей создает избыток электронов или дырок, образуя область проводимости п- или p-типа. Когда области обоих типов выполнены в одном кристалле, они образуют р-п-переход. Через него могут диффундировать заряды, образуя так называемые неосновные носители, т. е. носители зарядов, имеющих знак, противоположный основным (электроны в р-области и дырки в п-области). Диффузия продолжается до тех пор, пока не установится потенциальный барьер, препятствующий движению носителей заряда.

Обычно возвращаемая энергия выделяется в виде теплоты, однако при определенных условиях (сохранение энергии и импульса при рекомбинации) происходит излучение фотона. В зависимости от материала полупроводника и концентрации примесей излучение имеет определенную длину волны, что позволяет создавать СИД с различным цветом свечения. Так как переход электронов осуществляется не с дискретных уровней, а с зон разрешенных состояний, имеющих определенную ширину, то излучение не является монохроматическим.

Рис. 9. Конструкция светоизлучающего диода:

1 – полупроводниковый слой p-типа; 2 – прозрачная подложка; 3 – полупроводниковый слой п-типа; 4 – керамический корпус; 5 – электрод

Изготавливаются СИД в виде дискретных элементов отображения (рис. 9), в виде монолитных полосково-сегментных приборов, а также в виде небольших матриц с

- адресацией. В настоящее время промышленностью выпускаются в основном приборы, излучающие в красном, зеленом и желтом диапазонах при яркостях примерно в 100 кд/м2. Монолитные кристаллы СИД имеют площадь не более 1 – 2 см2, однако уже длительное время ведутся работы по созданию на их базе плоских цветных телевизионных экранов.

1.4. Газоразрядные индикаторы

В принципе любой газоразрядный прибор представляет собой заполненную инертным газом изолированную от внешней среды ячейку, внутри которой на близком расстоянии друг от друга расположены два электрода. Широкое распространение в технике получили газоразрядные приборы типа неоновых ламп, тиратронов тлеющего разряда, линейных газоразрядных индикаторов и пр. Их область применения ограничена в основном сигнализацией состояния различных устройств и объектов.

В простых устройствах отображения цифровой и знаковой информации нашли применение индикаторные лампы тлеющего разряда. Их особенностью является наличие нескольких фигурных катодов в одном баллоне.

Значительно расширилась область применения газоразрядных индикаторов с появлением матричных цифровых панелей (плазменных панелей). Они представляют собой плоский экран, на котором любое изображение создается большим числом светоизлучающих газоразрядных элементов, образованных на пересечениях горизонтальных и вертикальных электродов.

Существуют два основных типа плазменных панелей: постоянного тока с внешней адресацией и переменного тока с запоминанием информации. Панели постоянного тока имеют плоскую трехслойную конструкцию, в которой между двумя стеклянными пластинами с нанесенной на их внутреннюю поверхность системой взаимно перпендикулярных полупрозрачных электродов расположена перфорированная изолирующая матрица. Отверстия в матрице заполнены газом и размещаются в местах пересечения электродов. Свечение возникает при подаче на соответствующую пару электродов напряжений. Для получения устойчивого изображения необходимо последовательно подавать высоковольтное напряжение на требуемые точки.