Смекни!
smekni.com

Автоматическая система регулирования с П-регулятором (стр. 4 из 7)

Находим постоянную времени и время задержки:

Таким образом динамическая характеристика первого порядка с запаздыванием будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений, причем значения функции при

учитывать не будем. Результаты сведем в табл. 8.

Таблица 8

Результаты расчета

i 1 2 3 4 5 6 7 8 9 10
yi 0 0 0.5 0,71 0,8 0,91 0,98 0,99 0,995 1
yiанал 0 0 0.199 0.565 0.764 0.872 0.93 0.962 0.98 0.989
yi
0 0 0.301 0.145 0.036 0.038 0.05 0.028 0.015 0.011
0 0 0.090493 0.020928 0.001291 0.001448 0.002451 0.000769 0.00024 0.000124

Далее находим сумму квадратов отклонений:

.

Так как сумма квадратов отклонений у модели с запаздыванием меньше, чем у модели без запаздывания, то ее использование позволяет более точно описывать протекание переходного процесса.

Расчет на ЭВМ моделей более высоких порядков показывает, что наименьшее значение суммы квадратов отклонений будет у модели второго порядка. Поэтому в дальнейших расчетах будем выполнять все действия именно для модели второго порядка.

Ниже приведен проверочный расчет динамической модели объекта первого порядка с запаздыванием и модели второго порядка с запаздыванием на ЭВМ в системе MathCad.






3. Построение математической модели

Передаточная характеристика объекта представляет собой отношение выходной величины к входной величине.

Передаточная характеристика объекта второго порядка с запаздыванием отличается от характеристики первого порядка наличием в знаменателе дроби квадрата суммы:

После подстановки известных численных значений и всех преобразований, получим:

Приведем полученное выражение к нормальной системе дифференциальных уравнений первого порядка и построим математическую модель объекта на ЭВМ в системе MathCad.


4. Аналитическое решение

Для отыскания аналитического решения решим характеристическое уравнение:

0,931 р2 + 1,93 р + 1 = 0 (4.1)

p1 = -1,781; p2 = - 0,290 - корни характеристического уравнения.

Ввиду того, что корни характеристического уравнения кратные подставим их в выражение вида:

u(t) = kx. [1 – [1 + p. (t – τ) ] .ep(tτ) ] (4.2)

где к – коэффициент передачи при 50% номинального режима

р – корни характеристического уравнения (4.3)

t – соответствующий момент времени

τ – время запаздывания

Подставляя соответствующие значения к, р, t, τ получим график переходного процесса в объекте.

Ввиду сложности расчеты производятся на ПЭВМ (см. распечатку)

5. Частотные характеристики

Частотные характеристики объекта связаны с его передаточной функцией следующим образом:

где к = к (50%) = 0.428- коэффициент передачи при 50%:

Т = 0.965- постоянная времени:

t = 0.715- время запаздывания.

е-τp = cos(w. t) - j . sin(w. t).

Заменив, в выражении для объекта второго порядка величину p на мнимую величину jw, получим комплексную функцию W(jw).

Преобразовав выражение (4.1) получим, что:


Обозначим в формуле (5.2) :

- Вещественная частотная

характеристика системы

- мнимая частотная

частотная характеристика системы


Подставив R(w) и I(w) в уравнение (5.2):

W(jw) = R(w) + j .I(w)

Составим соотношения, связывающие между собой частотные характеристики :

где А(w) - амплитудно-частотная характеристика

L(w) - логарифмическая амплитудно-частотная характеристика.

F(w) - фазочастотная характеристика

По формулам (5.3) - (5.5) находим значения для построения частотных характеристик. Эти значения сведены в таблицу 5.1 стр. 30.

Ниже приведен расчет частотных характеристик объекта на ЭВМ в системе MathCAD . Расчет произведен в диапазоне частот 0...2 c-1 для 100 точек. Также представлены графики при

следующих характеристик:

- амплитудно-частотной;

- логарифмической амплитудно-частотной;

- фазо-частотной;

- амплитудно-фазо-частотной.


Расчет расширенных частотных характеристик

При расчете расширенных частотных характеристик вместо замены

производят замену
, где m=0,221 - степень колебательности системы. Введем обозначение:


где

Далее, аналогично обычным частотным характеристикам, задавшись рядом частот, подаваемых на вход объекта, производим расчет расширенной амплитудно-частотной характеристики по формуле:

Затем рассчитываем расширенную фазо-частотную характеристику по формуле:

.

Ниже приведен расчет расширенных частотных характеристик объекта на ЭВМ в системе MathCAD . Расчет произведен в диапазоне частот 0...2 c-1 для 100 точек. Также представлены графики при

следующих характеристик:

- расширенной амплитудно-частотной;

- расширенной амплитудно-фазо-частотной.


6. Выбор и расчет параметров настройки регуляторов

Автоматические регуляторы по своим динамическим свойствам подразделяются на линейные и нелинейные. При проектировании наиболее часто применяемых линейных регуляторов используют:

- пропорциональный регулятор (П-регулятор);

- интегральный регулятор (И-регулятор);

- пропорционально-интегральный регулятор (ПИ-регулятор);

- дифференциальный регулятор (Д-регулятор);

- пропорционально-дифференциальный регулятор (ПД-регулятор);

- пропорционально-интегро-дифференциальный регулятор (ПИД-регулятор).

Требования, предъявляемые к регулятору, обусловлены требованиями ко всей системе регулирования: в обеспечении устойчивости замкнутой системы. При проектировании систем стремятся обеспечить их устойчивость с некоторой гарантией, так чтобы изменение параметров в некоторых пределах не могло привести к неустойчивости. Для этой цели используются понятия запасов устойчивости систем автоматического регулирования, вводимых на основе частотного критерия Найквиста:

где

- передаточная функция объектарегулирования;

- передаточная функция регулятора.

6.1 Расчет П-регулятора

Передаточная характеристика П-регулятора имеет вид: