Смекни!
smekni.com

Антенна РЛС – параболоид вращения (стр. 2 из 4)

Проведем расчет радиуса выпуклой части зеркала. Для этого строится график функции радиуса раскрыва от расстояния у(x) =(4f·x) 0.5, где f– расстояние до фокуса. В результате получен график представленный на рисунке 12.

Рисунок 3 – Зависимость радиуса раскрыва от расстояния.

Радиус параболической части зеркала равен 0.9м. В результате полностью определены геометрические размеры зеркала.

3. Выбор облучателя, и его расчет

Для дальнейших расчетов требуется выбрать облучатель который бы удовлетворял данной антенне. Одной из важных частей параболической антенны является первичный облучатель, помещаемый в фокусе зеркала. В идеале к нему предъявляются следующие требования: 1) облучатель не должен излучать энергию в направлении, противоположном направлению на зеркало, так как это излучение не фокусируется зеркалом и поэтому искажает основную диаграмму направленности; 2) диаграмма облучателя должна обеспечивать равномерное облучение зеркала и получение таким образом максимального коэффициента направленного действия; 3) диаграмма облучателя должна быть такой, чтобы фаза поля в раскрыве зеркала была постоянной. Облучатель, вполне удовлетворяющий этим требованиям, практически не существует. При конструировании параболических антенн используют облучатели в виде полуволнового вибратора, открытого конца волновода, рупора и щели, хотя они только частично удовлетворяют перечисленным требованиям.

Рассмотрим подробнее некоторые типы облучателей.

3.1. Полуволновый вибратор с контррефлектором

В десятисантиметровом диапазоне волн этот облучатель является наиболее удобным в конструктивном отношении. Он легко согласуется с коаксиальным фидером, так как имеет входное сопротивление, близкое к волновому сопротивлению фидера. К недостаткам такого облучателя следует отнести то обстоятельство, что фактически, ввиду конечных размеров, такой облучатель имеет сферический фронт волны только в дальней зоне. Однако при больших фокусных расстояниях (5 - 10λ) в пределах небольшого телесного угла фронт волны облучателя можно считать близким к сферическому.

Кроме того, полуволновый симметричный вибратор имеет излучение, направленное вперед и назад, что ухудшает форму диаграммы направленности зеркала. Для "гашения" излучения вперед применяется контррефлектор в виде пассивного вибратора, диска или части сферы.

В технике сантиметровых волн чаще используется рефлектор в виде диска, так как он лучше уничтожает излучение вперед. Для облучателя рассматриваемого типа характерно, что ось его диаграммы направленности из-за несимметричности питания вибратора при применении коаксиального фидера без симметрирующего устройства не совпадает с осью зеркала. Это явление перекоса успешно используется для целей пеленгации. При вращении облучателя вокруг своей оси лепесток диаграммы описывает конус, создавая эффективную равносигнальную зону вдоль оси параболоида.

Рассмотрим расчет облучателя с контррефлектором в виде диска.

а) Выбор размеров облучателя.

Диаметр вибратора выбирают из условий получения нужного диапазона частот и достаточной механической прочности. Практически диаметр вибратора часто полагают равным диаметру внутреннего провода питающей коаксиальной линии, чтобы уменьшить неоднородность в точке подключения вибратора, а также для удобства сборки. Диаметр контррефлектора рекомендуется брать D=0.815λ/4. Такой контррефлектор дает достаточно хорошую экранировку переднего лепестка диаграммы вибратора и в то же время не слишком "затемняет" параболическое зеркало. Располагают рефлектор от вибратора на расстоянии d = λ/4, что создает оптимальные условия для сложения поля активного вибратора и поля, отраженного от контррефлектора. Изображение контрефлектора и облучателя представлено на рисунке 3.

Рисунок 3 – Выбор размеров контррефлектора и облучателя.

В результате при заданной частоте (λ=0.25м) рассчитаем значение диаметра:

D=0.815∙0.25/4=0.051м, d =0.0625м.

б) Расчет диаграммы направленности облучателя.

Воспользуемся принципом зеркального изображения и заменим действие металлической поверхности контррефлектора пассивным вибратором, расположенным на расстоянии

от активного и несущим ток, сдвинутый по фазе на 180° относительно тока в активном вибраторе.

Тогда в любой точке пространства поле будет определяться как сумма полей обоих вибраторов и может быть рассчитано умножением диаграммы одиночного полуволнового симметричного вибратора F1(θ) на множитель решетки F2(θ):

(4)

Где N – количество вибраторов (в рассматриваемом случае 2);

n – расстояние между вибраторами выраженное в длинах волнах(n=1/2);

p – сдвиг фаз между точками в вибраторах; р=1/2 (в периодах);

θ – угол между линией расположения вибраторов и рассматриваемым направлением.

На рисунке 4 представлено зеркальное изображение вибратора с контррефлектором.

Рисунок 4 – Зеркальное изображение вибратора с контррефлектром в виде диска.

После преобразования множитель решетки имеет вид:

F2(θ) =2cos [900(1-cos(θ))] (5)

Для одиночного, горизонтально расположенного вибратора диаграмма направленности горизонтальной плоскости определяется выражением:

(6)

Eθ – поле в рассматриваемом направлении;

Emax – поле в направлении максимального излучения (θ=00);

Θ – угол отсчитываемый от нормали к вибратору.

Окончательно диаграмму направленности в горизонтальной плоскости вибратора с контррефлектором можно записать в виде:

(7)

Диаграмма направленности вибратора с контррефлектором в горизонтальной плоскости представлена на рисунке 5.

Рисунок 5 – Диаграмма направленности в горизонтальной плоскости контррефлектора.

Диаграмма направленности системы в вертикальной плоскости определяется одним только множителем F2(θ), так как излучение одиночного горизонтального вибратора в этой плоскости ненаправленное, представлена на рисунке 6.

Рисунок 6 – Диаграмма направленности в вертикальной плоскости контррефлектора.

Учитывая, что форма диаграммы направленности как в горизонтальной, так и вертикальной плоскостях для большинства применяющихся облучателей мало отличается друг от друга в пределах угла раскрыва зеркала, для упрощения в дальнейших расчетах используется в обоих плоскостях более широкая из диаграмм направленности.

в) Расчет входного сопротивления.

Входное сопротивление полуволнового вибратора с контррефлектором в виде диска, расположенного на расстоянии d = λ /4, рассчитывается как сумма:

Z1=Z1,1+Z1,2 (8)

Где Z1,1 – собственное сопротивление вибратора Z1,1 =(73.1+j42.5) Ом;

где Z1,2 – наведенное сопротивление, вносимое пассивным вибратором в сопротивление активного вибратора.

Так как в рассматриваемом случае в пассивном вибраторе ток противоположен по фазе току в активном I2=-I1, то величина наведенного сопротивления связывается с величиной взаимного сопротивления следующим образом:

Z1,2 =-ZǍC (9)

Величину взаимного сопротивления можно определить по графикам, приведенным в книге Г.З. Айзенберга:

ZǍC=(-13-j30) Ом

Таким образом, наведенное сопротивление можно записать так:

Z1,2 =(13+j30) Ом, а величина входного сопротивления вибратора с контррефлектором в виде диска определится из выражения:

Z1=Z1,1+Z1,2=(86.1+j72.5) Ом.

Для согласования вибратора с питающим фидером желательно, чтобы входное сопротивление вибратора было чисто активным. Для получения чисто активного входного сопротивления вибратор укорачивают; подбор величины укорочения вибратора рекомендуется производить экспериментальным путем.

г) Расчет коэффициента направленного действия.

Коэффициент направленного действия облучателя в виде вибратора с диском по сравнению с ненаправленным излучением можно рассчитывать по формуле:

. (10)

Где RΣ – сопротивление излучения облучателя;

А – функция, характеризующая диаграмму направленности облучателя;

Аmax – значение функции в направлении максимального излучения.

Для полуволного вибратора с диском величина

Аmax =N∙60=2∙60=120.

Поэтому численное значение коэффициента направленного действия равно:

3.2. Щелевой облучатель

Щелевой облучатель удобен при работе в наиболее короткой части сантиметрового диапазона (λ = 3 см и ниже), так как конструкция его наиболее компактна и проста для работы в этом диапазоне. Щелевой облучатель можно защитить от атмосферных влияний, закрыв его излучающие отверстия полистироловыми пластинками.