Смекни!
smekni.com

Измерение низкоэнергетических y–квантов. Спектрометрия КХ–y–излучения (стр. 1 из 3)

Измерение низкоэнергетических γ – квантов.Спектрометрия КХ – γ – излучения


Введение

Известны различные способы диагностики злокачественных новообразований, основанные на микроскопическом, цитологическом, иммунологическом и биохимическом анализе крови и лимфы.

Однако эти способы позволяют диагностировать опухоли лишь некоторых локализаций, при этом надежность диагноза и чувствительность тестов недостаточно высокая.

Более ясную картину даёт радионуклидная диагностика. Но и тут иногда возникают неясности. Например, эта диагностика не сможет отличить доброкачественную опухоль от злокачественной. К тому же иногда возникают артефакты – объекты, которые являются следствием несовершенства электронной схемы анализатора. Они видны на изображении как различные образования, но в реальности они отсутствуют. Применение в комплексе со спектроскопией спектрометрии позволяет снять эту неопределённость.

Злокачественные новообразования можно выявить путем определения содержания определённых химических элементов в биологической жидкости больного. Например, в сухом остатке лимфы определяют концентрацию цинка, алюминия и сурьмы и при содержании двух исследуемых элементов соответственно от 50 мкг/г до 350 мкг/г, от 70 мкг/г до 430 мкг/г и от 80 нг/г до 4 мкг/г диагностируют злокачественную опухоль.

Сущность метода следующая: под местной анестезией из лимфатического сосуда берут небольшое количество лимфы, затем лимфу высушивают и анализируют на содержание нужных химических элементов. Анализ проводят с помощью γ – спектрометрии.

Её проводят следующим образом: сухой остаток лимфы запаивают в полиэтиленовую плёнку и облучают в горизонтальном канале ядерного реактора (при этом достигается поток nоколо 1013

) в течение трёх минут. Затем через 1,5 минуты в течение 5 минут проводят гамма – спектрометрию с целью определения концентрации алюминия
. Далее пробу переупаковывают в контейнер из высокочистой алюминиевой фольги и облучают ещё в течение 5 суток. Потом 30 минут проводили гамма – спектрометрию с целью определения концентраций
и
. При этом статистическая погрешность определения концентраций составляет: для Al – 3%, для Zn – 0.5%, для Sb – 4%.

Измерение спектров с помощью полупроводникового гамма-спектрометра

Прямое измерение распределения ядерных частиц по энергиям N(E) в большинстве практических случаев невозможно. На практике обычно измеряют распределение частиц F(A), где параметр А должен быть однозначно связан с энергией регистрируемых частиц Е, т.е.A = f(E). Затем по измеренному распределению F(A) и связи параметра А с энергией Е восстанавливают искомый спектр частиц N(E) = F(f(E)). Спектрометры, в которых реализуется линейная связь между А и Е называются линейными спектрометрами. Математический вид функций N(E) и F(A) в таких спектрометрах одинаков.

В рассматриваемом нами полупроводниковом спектрометре параметром А является амплитуда импульса U, получаемого на выходе из детектора.

Амплитуда выходного импульса детектора пропорциональна энергии ядерной частицы. Следовательно, измерив распределение ядерных частиц, зарегистрированных детектором, по амплитудам импульсов, можно найти распределение этих частиц и по их энергиям, т.е. определить энергетический спектр ядерного излучения.

Измерение и сортировка импульсов напряжения по амплитудам выполняется специальными электронными устройствами, которые называются многоканальными амплитудными анализаторами импульсов. Амплитуда импульсов, поступающих на вход многоканального амплитудного анализатора, имеет, вообще говоря, непрерывный характер распределения. Анализатор разделяет весь диапазон возможных значений амплитуд (0 – Umax) на К одинаковых участковDU, называемых каналами. Импульсы, амплитуда которых лежит в пределах [mDU¸ (m+1)DU], где m=0,1…K-1, фиксируются анализатором как одинаковые и регистрируются в его канале с номером m. Таким образом, непрерывное распределение амплитуд импульсов на входе в анализатор преобразуется в дискретное распределение импульсов по амплитудам с шириной шага DU, называемое гистограммой. Число каналов анализатора К обычно равно 2n, например, 256, 512, 1024 и т.д. Чем больше число каналов, тем точнее измеряется спектр излучения. Действительно, чем больше каналов имеет анализатор, тем меньше будет ширина канала DU, следовательно, тем точнее гистограмма спектра отражает реальное распределение частиц по амплитудам импульсов и тем точнее можно восстановить энергетический спектр ядерного излучения. В нашей работе мы используем анализатор, имеющий 4096 каналов.

Устройство спектрометра

В основе полупроводникового гамма – спектрометра лежит полупроводниковый детектор гамма – излучения. Формирование электрического импульса с детектора происходит в несколько этапов.

На первом этапе в полупроводнике возникают свободные носители заряда. Т.к. гамма – кванты электрически нейтральны, то непосредственная их регистрация невозможна. При прохождении гамма – кванта, квант может либо рассеяться на электроне, либо поглотиться; образование пар маловероятно, т. к. энергия, рассматриваемого нами КХ – излучения, обычно меньше порогового значения образования пар. В любом случае в полупроводнике возникают быстрые электроны, которые выбивают другие электроны в каскадном процессе ударной ионизации из различных энергетических зон, в том числе и самых глубоких. Этот процесс продолжается до тех пор, пока энергия частицы не станет меньше некоторого порогового значения, примерно равного 1,5

, где
- ширина запрещённой зоны. Эта стадия длится примерно
, что сравнимо со временем замедления частицы в веществе.

На втором этапе в результате различных взаимодействий электронов с кристаллической решёткой электроны «падают» на дно зоны проводимости, а дырки поднимаются к верхнему краю валентной зоны, т.е. в системе устанавливается состояние с минимальной энергией. Вторая стадия также длится в среднем

, и затем распределение скоростей носителей заряда становится тепловым. Т.о. генерация и замедление носителей до тепловых скоростей заканчивается вместе с замедлением ионизирующей частицы.

На следующей стадии с помощью внешнего электрического поля, подведённого к электродам, собирают носители заряда, и полученный импульс тока поступает далее на схему анализа. Следует отметить, что наряду с процессом генерации носителей заряда происходит и обратный процесс их рекомбинации, характеризующийся временем жизни носителей

. Следовательно, для хорошей работы детектора необходимо, чтобы время сбора заряда было много меньше
. Также следует учесть, что входная цепь анализирующей цепи характеризуется своим временем релаксации
и, очевидно, чтобы измерительная цепь не искажала сигнал, необходимо чтобы время сбора заряда было меньше
.

Блок – схема простейшего гамма – спектрометра.

Рис. 1

Он состоит из полупроводникового детектора, обычно помещаемого в экран, который служит защитой от внешнего фонового излучения, согласующего блока (предусилителя), линейного усилителя импульсов и многоканального амплитудного анализатора. Энергия зарегистрированного γ – кванта определяется по высоте амплитуды импульса снимаемого с выхода детектора.

Требования, предъявляемые к усилителям, определяются характером импульсов, снимаемых с детектора. Так как фронт импульса (его нарастание по времени) очень короткий, то спектрометрические усилители должны обладать широкой полосой пропускания. Коэффициент усиления, должен быть стабильным и не зависеть от амплитуды усиливаемого сигнала, иначе форма спектра будет искаженной, произойдет уширение пиков и их смещение, т.е. получится несоответствие между действительной амплитудой импульса с детектора и положением канала анализатора, в который эта амплитуда записывается. Немаловажное требование к спектрометрическому усилителю – минимальный уровень собственных шумов, поскольку отношение сигнал/шум является определяющим при регистрации γ – квантов малой энергии.

Основными требованиями, предъявляемыми к высоковольтному источнику питания детектора, является высокая стабильность напряжения. Практически стабильность источника высокого напряжения должна быть не хуже (0.01 –0.05)%.

Спектры гамма-квантов анализируются многоканальными амплитудными анализаторами.

Амплитудный анализатор выполняет две функции: