Смекни!
smekni.com

Когерентное накопление сигнала (стр. 2 из 3)

Фильтровой способ когерентного накопления сигнала

В основе построения фильтровых схем когерентного накопления. сигнала, обладающих свойством инвариантности ко времени запаздывания, лежат следующие соображения. С использованием одной или нескольких линий задержки на период повторения

можно совместить во времени одиночные сигналы нескольких периодов повторения.

Рис. 7. Дополнительная спектральная интерпретация процесса когерентного накопления сигнала.

Рис. 8. Корреляционная схема когерентного накопления сигнала на видеочастоте с двумя квадратурными каналами.

Поскольку сигналы характеризуются сильной междупериодной корреляцией, операция череспериодного суммирования, которая является дискретным аналогом временного интегрирования, должна при водить к когерентному (синфазному) накоплению сигналов во всех элементах разрешения по времени запаздывания (дальности) при условии компенсации доплеровского смешения частоты сигнала или коррекции доплеровского набега фазы сигнала за период повторения. При этом, очевидно, что амплитуда когерентного накопленного сигнала увеличивается пропорционально числу когерентно сложенных сиг налов.

Два варианта фильтровых схем когерентного накопления сиг нала на радиочастоте, в которых выполняются все перечисленные преобразования, необходимые для когерентного накопления сигнала, показаны на рис. 10 и рис. 1. В первом варианте (рис. 10) используется многоотводная линия задержки, число звеньев задержки в которой (каждое звено - на период повторения ) на единицу меньше числа когерентно суммируемых одиночных сигналов N. Во втором варианте (рис. 11) используется рециркулятор-череспериодный сумматор с положительной задержанной (на период повторения) обратной связью. Коэффициент положительной задержанной обратной связи m определяет эффективное число когерентно суммируемых по закону геометрической прогрессии одиночных сигналов

:

,

откуда

.

Квадрат АЧХ устройства когерентного накопления сигнала, выполненного по первому варианту согласно схемена рис. 10, определяется выражением (рис. 12):

откуда следует ширина зубцов АЧХ когерентного накопителя, обратно пропорциональная времени когерентного накопления

.

Рис. 9. Узкополосный фильтр (интегрирующая цепь) на видеочастоте.

Рис. 10. Фильтровая схема когерентного накопления сигнала на многозвенной линии задержки.

Рис. 11. Фильтровая схема когерентного накопления сигнала на рециркуляторе.


Рис. 12. АЧХ устройства когерентного накопления сигнала, показанного на рис. 10.

Рис. 13. АЧХ устройства когерентного накопления сигнала, показанного на рис. 11.

Квадрат АЧХ устройства когерентного накопления сигнала, выполненного по второму варианту согласно схеме на рис. 11, определяет ся выражением (рис. 13)

,

откуда следует ширина зубцов АЧХ когерентного накопителя

,

Это означает, что для когерентного накопления одиночных сигналов на интервале

коэффициент задержанной обратной связи рециркулятора должен быть равен:

.

Достоинством накопителя на рециркуляторе (рис. 11.) по сравнению с накопителем на многозвенной линии задержки (рис. 10) является использование единственной широкополосной линии задержки на период повторения (с полосой пропускания не меньше ширины спектра сигнала

). Недостатком этой схемы является проблема ее устойчивости при коэффициенте задержанной обратной связи, близком к единице (
), из-за чего эффективное число когерентно накапливаемых сигналов оказывается ограниченным.

.

Аналогичные по принципам построения, функционированию и характеристикам фильтровые схемы когерентных накопителей могут быть выполнены на видеочастоте (с двумя квадратурными каналами). Техническая реализация устройств череспериодного суммирования на видеочастоте возможна с использованием не только линии задержки на период повторения, но и интегрирующих потенциалоскопов.

Эффективность и характеристики обнаружения когерентного накопления сигнала

Когерентное накопление является линейной операцией обработки сигналов. Поэтому критерием эффективности когерентного накопления может служить выигрыш в отношении сигнал/шум, обеспечиваемый накопителем. Для сравнения полезно указать, что рассмотренные ранее виды обработки (корреляционная и фильтровая обработка одиночных сигналов известном формы, компенсация мешающих отражений) также относились к классу линейных операций и характеризовались отношением сигнал/помеха на выходе.

Удобным методом анализа эффективности когерентных накопителей является спектральный анализ с использованием междупериодного энергетического спектра сигнала и частотных характеристик когерентных накопителей независимо от способаих технической реализации (корреляционного или фильтрового). Пусть зубцы гребенчатого энергетического спектра последовательности сигналов и зубцы гребенчатой АЧХ накопителя имеют прямоугольную форму (рис. 14), что значительно упрощает анализ, не влияя на его результаты. В случае, представляющем наибольший практический интерес, когда

, мощность сигнала на выходе (с учетом нормированной АЧХ) не изменяется,

Рис. 14. Пояснение эффективности когерентного накопления.

а мощность шума оказывается пропорциональной относительной ширине зубцов АЧХ накопителя

, т.е. уменьшается в число раз, равное "скважности" АЧХ
Поэтому отношение сиг нал/шум по мощности на выходе накопителя увеличивается в число раз, равное эффективному числу когерентно накапливаемых сигналов

.

Итак, эффективность когерентного накопления определяется эффективным числом когерентно накапливаемых сигналов

.

При когерентном накоплении сигналов на всем интервале наблюдения (

) максимальная эффективность когерентного накопления равна числу одиночных сигналов последовательности

.

Действительно, амплитуда синфазно (или когерентно) суммируемых сигналов увеличивается при этом в N раз, а мощность в

раз. Мощность шума, у которого междупериодная корреляция отсутствует, в результате накопления увеличивается в N раз (аналогично дисперсии суммы независимых слагаемых). В итоге отношение сигнал/шум по мощности возрастает пропорционально числу накапливаемых сигналов N .

Отношение сигнал/шум по мощности в результате когерентного накопления последовательности одиночных сигналов может быть также представлено отношением энергии последовательности ("пачки") сигналов к спектральной плотности шума

,

поскольку последовательность ("пачку") медленно флуктуирующих сиг налов, когда интервал когерентности намного превышает время наблюдения (

) можно рассматривать как единый сигнал, известной формы.

Продолжая эту аналогию "пачки" с сигналом известной формы, можно заметить, что для такого сигнала возможны различные варианты степени известности начальной фазы и амплитуды к соответствующие этим вариантам характеристики обнаружения:

a) «Пачка» одиночных сигналов с известной начальной фазой и неслучайной амплитудой