Смекни!
smekni.com

Конденсатор переменной емкости (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет радиоэлектроники

Кафедра ПЭЭА

Пояснительная записка к курсовому проекту

по курсу: «Элементная база ЭА»

Тема проекта: «Конденсатор переменной емкости (минимальная ёмкость, Сmin, пФ – 8; максимальная ёмкость, Сmax, пФ – 120; рабочее напряжение, Uраб, В – 24; закон изменения ёмкости – прямоволновой)»

2009


СОДЕРЖАНИЕ

Введение

1. Анализ технического задания

1.1 Анализ условий эксплуатации

1.2 Обоснование дополнительных требований и параметров

2. Обзор аналогичных конструкций и выбор направления проектирования

3. Расчет конденсатора

3.1 Расчет электрических и конструктивных параметров

3.2 Вычисление температурного коэффициента емкости

3.3 Расчет контактной пружины

4. Описание конструкции и технологии

Паспорт

Выводы

Список литературы


ВВЕДЕНИЕ

Важной частью радиоэлектронной аппаратуры (РЭА) и бытовой в частности являются электрорадиоэлементы (ЭРЭ), которые лежат в их основе. По этой причине неразрывно связаны: качество РЭА и радиоэлементов. Основным этапом, на котором задаются параметры радиоэлементов, является этап проектирования. В ходе проектирования учитывается конструктивные и технологические факторы. Нужно выбрать правильный вариант конструкции, согласовав минимальные габаритные размеры и требуемые технические характеристики.

Задачей данного курсового проектирования является разработка конденсатора переменной ёмкости с заданными параметрами, а также приобретение личного опыта разработки ЭРЭ. Курсовое проектирование должно научить студента самостоятельно работать, а также способствовать его самовоспитанию, так как творческое отношение к труду – важнейшее качество специалиста любой профессии, а развитие творческих способностей является объективной потребностью, диктуемой развитием науки и техники.


1. АНАЛИЗ ТЕХНИЧЕСКОГО ЗАДАНИЯ

Исходные данные

Минимальная ёмкость, Сmin, пФ 8

Максимальная ёмкость, Сmax, пФ 160

Рабочее напряжение, Uраб, В 24

Закон изменения ёмкости прямоволновый

Программа, шт. 2000

1.1 Анализ условий эксплуатации

Данный конденсатор будет эксплуатироваться в бытовой радиоприёмной аппаратуре в широковещательном диапазоне. Исполнение прибора соответствовует УХЛ-4.2 ГОСТ 15150 – 69 - для районов с умеренным и холодным климатом.

Значения климатических факторов внешней среды при эксплуатации и испытаниях УХЛ-4.2 ГОСТ 15150 – 69.

Исполнение изделий – УХЛ; категория изделий - 4.2 .

Общие нормы климатических воздействий на РЭА для исполнения УХЛ приведены в табл. 1.1.

Таблица 1.1 – Общие нормы климатических воздействий на РЭА

Исполнение Категория размещения Воздействия температуры, °С Воздействия относительной влажности, %
Рабочие Предельные
Верхн Ниж Ср. Верхн Нижн
УХЛ 4.2 +35 +10 +20 +40 +1 98% при 25°С

В соответствии с ГОСТ 16019-78 РЭА должна выдерживать нормативные воздействия, приведенные в таблице 1.2.


Таблица 1.2 – Бытовая РЭА. Нормы климатических и механических воздействий для 1-й группы

Вид воздействия, характеристики Нормы воздействий
Прочность при транспортировании: ускорение, g длительность ударного импульса, мс число ударов, не менее 15 11 1000
Теплоустойчивость: рабочая температура, °С предельная температура, °С 40 55
Пониженное атмосферное давление, кПа 70
Холодоустойчивость: предельная температура, °С -40
Влагоустойчивость: влажность, % температура, °С 93 25

1.2 Обоснование дополнительных требований и параметров

В ТЗ не обговорены требования к габаритам и массе предложенного к разработке КПЕ. В связи с этим можно применить воздух в качестве диэлектрика, что позволит сконструировать конденсатор с более высокими качественными показателями по сравнению с конденсаторами с твёрдым диэлектриком. В следующем разделе будут рассмотрены разнообразные варианты конструкций КПЕ и выбраны наиболее подходящие для получения оговоренных в ТЗ характеристик.

Суммарное число пластин конденсатора выбирается с учётом того, что суммарная длина секции должна быть приближённо равна радиусу пластины ротора и суммарная длина КПЕ не должна превышать заданное в ТЗ значение.

Число пластин выбираем в зависимости от максимальной емкости, то согласно ТЗ Сmax=160, следовательно выбираем N=11 [1]


2. ОБЗОР АНАЛОГИЧНЫХ КОНСТРУКЦИЙ И ВЫБОР НАПРАВЛЕНИЯ ПРОЕКТИРОВАНИЯ

Изменение ёмкости конденсатора может быть получено двумя принципиально разными способами управления - механическим и электрическим. Особенности конденсаторов с механическим управлением заключается в возможности реализации заданных законов изменения ёмкости при перемещении пластин; получения изменения широкого диапазона изменения ёмкости и больших величин добротности; обеспечение больших рабочих напряжений и малых значений температурного коэффициента ёмкости (ТКЕ); независимости величины ёмкости от приложенного напряжения; сравнительно большом времени, необходимом для изменения ёмкости; зависимости величины ёмкости от влажности и внешних механических воздействий, относительной сложности конструкции и больших габаритах.

Конденсатор переменной ёмкости с механическим управлением представляет собой две системы плоских пластин: неподвижную (статор) и подвижную (ротор), расположенных таким образом, что при вращении ротора его пластины входят в зазоры между пластинами статора.

В зависимости от угла поворота различают:

- конденсаторы с нормальным угловым диапазоном, при котором угол поворота равен 180о;

- конденсаторы с расширенным угловым диапазоном- угол поворота ротора больше 180о;

- конденсаторы с уменьшенным угловым диапазоном, например равным 90о.

В зависимости от величины приложенного напряжения конденсаторы переменной ёмкости рассчитывают:

- для электрических цепей с малым напряжением (менее 200В);

- для электрических цепей с повышенным напряжением (более 200В);

- для электрических цепей с большим напряжением (более 1000В).

По закону изменения ёмкости конденсаторы подразделяют на прямоёмкостные, прямоволновые, прямочастотные и логарифмические.

По типу диэлектрика конденсаторы различают на:

- конденсаторы с воздушным диэлектриком;

- конденсаторы, заполненные сжатым газом;

- вакуумные конденсаторы;

- конденсаторы с жидким диэлектриком;

- конденсаторы с твёрдым диэлектриком.

По числу секций конденсаторов, одновременно изменяющих свою ёмкость, конденсаторы делят на односекционные и многосекционные.

Для одновременной настройки нескольких контуров применяются многосекционные конденсаторы. В зависимости от того, какие из блоков этого рода применены в аппаратуре, к схеме соединения отдельных секций предъявляют различные требования. Например, в тех случаях, когда блок конденсаторов должен быть проще и дешевле, используют схемы, в которых все роторы гальванически соединены между собой общей металлической осью. Однако при этом между отдельными секциями конденсатора возникает электрическая связь, объясняемая электрической проводимостью оси, соединяющей роторы. В других случаях, когда существенно важно как можно больше уменьшить связь между настраиваемыми контурами, применяют блоки, у которых и статоры и роторы изолированы друг от друга, а ось, соединяющая роторы, сделана из изоляционного материала.

Конденсаторы переменной ёмкости с механическим управлением между собой различаются видом диэлектрика (твёрдый, жидкий или газообразный) и способом задания функциональной зависимости изменения ёмкости от угла поворота (конденсаторы с фигурными пластинами ротора или с вырезом в статорных пластинах).

Воздух по сравнению с твёрдыми и жидкими диэлектриками обладает рядом положительных свойств: ничтожными потерями, малой проводимостью, независимостью диэлектрической проницаемости от частоты и малой зависимостью от температуры, влажности и давления.

К недостаткам воздуха, как диэлектрика следует отнести малые значения диэлектрической проницаемости и пробивного напряжения, что влияет на габаритные размеры КПЕ.

Перечисленные положительные свойства воздуха как диэлектрика позволяют создать наиболее простые конструкции конденсаторов с высокими техническими характеристиками. Исходя из этого- в проектируемом КПЕ в качестве диэлектрика будет использоваться воздух.

У конденсаторов с переменным радиусом выреза в статорной пластине пластины ротора имеют более жесткую конструкцию, что даёт существенное преимущество только для прямоволнового закона изменения ёмкости. Для прямоволновой зависимости такое конструктивное решение является нецелесообразным.


3. ЭЛЕКТРИЧЕСКИЙ И КОНСТРУКТИВНЫЙ РАСЧЕТ

Величина зазора между пластинами ротора и статора выбирается с учётом требований электрической прочности, точности, температурной стабильности, габаритных размеров и производственно-технических соображений.

При большом зазоре увеличивается электрическая прочность, увеличивается температурная стабильность, но увеличиваются и габаритные размеры КПЕ. Маленький же зазор даёт плохие стабильность и электрическую прочность при малых габаритных размерах. В связи с этим с этим выбираем d = 0,3мм, считая это значение оптимальным с точки зрения отношения характеристик и габаритных размеров.