Смекни!
smekni.com

Логические элементы на дополняющих МДП-транзисторах. Особенности логических элементов, реализуемых в составе БИС (стр. 2 из 2)

(Работу схем в,г предлагается рассмотреть самостоятельно).

Особенностью ЛЭ на КМДП с ВБ является то, что при закрытом ВТ выход элемента надежно подключается через открытый БТ либо к источнику питания U, либо к общей шине, что обеспечивает высокую помехоустойчивость рассматриваемых ИМС, как это имеет место у традиционных КМДП-ИМС.

Большие функциональные возможности открываются при проектировании цифровых устройств при совместном применении ИМС на КМДП с ВБ, выполняющих функции НЕ, И и НЕ, И-НЕ с КМДП-ИМС, выполняющих функции И-НЕ и ИЛИ-НЕ.

На рис. 5 приведена схема ЛЭ, выполняющего функцию 4И-НЕ, причем два входа этой схемы являются инверсными, что обеспечивается за счет подключения двух схем НЕ, И на КМДП с ВБ к традиционной двухвходовой схеме И-HE.

Если вместо схемы И-НЕ применить двухвходовую схему ИЛИ-НЕ, то на тех же восьми дополняющих МДП-транзисторах будет реализована функция НЕ, И-ИЛИ-НЕ (рис. 2.26).

Анализируя схемы на рис. 5 и 6, можно увидеть, что схемы на КМДП с ВБ реализуют все функции, присущие элементам T-TTL. Применяя сочетания схем НЕ, И и НЕ, И-НЕ на КМДП с ВБ, подключаемых к входам традиционных схем И-НЕ, ИЛИ-НЕ и И-ИЛИ-НЕ, можно получить новые виды реализуемых функций, которые позволяют построить экономичные схемы триггеров, сумматоров, дешифраторов и других цифровых устройств.

Особенности логических элементов, реализуемыхв составе БИС

Рассмотренные типовые схемы ЛЭ TTL-, T-TTL, ECL-, И

Л-типов характеризуются универсальностью, так как предназначены для автономного применения в цифровых устройствах, при котором должно быть обеспечено высокое быстродействие передачи сигналов при хорошей помехоустойчивости и сравнительно высокой нагрузочной способности (типовые значения n=5…10). Однако использование этих элементов в составе кристалла БИС, где внутрисхемные связи имеют невысокую протяженность, сравнительно небольшую нагрузку и, следовательно, имеют низкую помехоустойчивость, позволяет упростить их конфигурацию и резко увеличить плотность упаковки ЛЭ в кристалле БИС. Упрощение схем ЛЭ позволяет значительно уменьшить число компонентов на реализацию вентилей И-НЕ, ИЛИ-НЕ, уменьшить потребляемую мощность и обеспечить качественный скачок при создании СБИС большой функциональной сложности.

Оценивая многообразие реализаций ЛЭ ИМС, необходимо выделить ряд наиболее приемлемых технологий БИС и СБИС, получивших наиболее широкое применение. К таким технологиям относятся биполярные и маломощные TTL-микросхемы с диодами Шотки, инжекционные логические микросхемы (И

Л), микросхемы эмиттерно-связанной логики (ECL) и в части МДП-технологии микросхемы на полевых транзисторах. Сравнительные характеристики ЛЭ БИС для этих технологий приведены в табл.1, где отражены относительные величины важнейших параметров.

Таблица 1. Сравнительные характеристики типовых элементов

биполярной и МДП-технологий.

Тип ИМС Относительная плотность упаковки* Удельная мощность мВт/вентиль Достижимая задержка на вентиль, нс
TTL-Ш 6 6 1
И
Л
10 2 2
ECL 1 20 0,3
n-МДП 10 3 3
КМДП 8 0,01 1

*) За единицу взята площадь размещения на кристалле ECL-вентиля.

Прогресс в отношении быстродействия и плотности ИС за последние десятилетия, отражает закон Мура, впервые сформулированный основателем фирмы Intel Гордоном Муром в 1965г. и состоящий в том, что число транзисторов, приходящихся на квадратный дюйм в ИС, каждый год удваивается.

В последние годы темп этого движения несколько замедлился: удвоение происходит теперь каждые 18 месяцев; но важно отметить, что одновременно с удвоением плотности также вдвое увеличивается быстродействие схем.

То есть полупроводниковая техника развивается по экспоненциальному закону.

Когда только появились ИС, в одном корпусе было порядка дюжины транзисторов. Сегодня в результате экспоненциального роста плотности упаковки микропроцессоры преодолели отметку в 10 миллионов транзисторов на один кристалл. Эксперты утверждают, что менее чем через 10 лет это число достигнет 100 миллионов.


ЛИТЕРАТУРА

1. Новиков Ю.В. Основы цифровой схемотехники. Базовые элементы и схемы. Методы проектирования. М.: Мир, 2001. - 379 с.

2. Новиков Ю.В., Скоробогатов П.К. Основы микропроцессорной техники. Курс лекций. М.: ИНТУИТ.РУ, 2003. - 440 с.

3. Пухальский Г.И., Новосельцева Т.Я. Цифровые устройства: Учеб. пособие для ВТУЗов. СПб.: Политехника, 2006. - 885 с.

4. Преснухин Л.Н., Воробьев Н.В., Шишкевич А.А. Расчет элементов цифровых устройств. М.: Высш. шк., 2001. - 526 с.

5. Букреев И.Н., Горячев В.И., Мансуров Б.М. Микроэлектронные схемы цифровых устройств. М.: Радио и связь, 2000. - 416 с.

6. Соломатин Н.М. Логические элементы ЭВМ. М.: Высш. шк., 2000. - 160 с.