Смекни!
smekni.com

Плоская антенна поверхностной волны с ребристой замедляющей структурой (стр. 1 из 4)

Министерство образования РФ

ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

«Плоская антенна поверхностной волны с ребристой замедляющей структурой»

пояснительная записка к курсовой работе по курсу:

«Антенны и устройства СВЧ»

Выполнил: студент гр.05РР2

Серегин Д.А.

Проверил преподаватель:

Маркелов М.К.

Пенза 2008 г.

Содержание

Основные термины.. 3

Исходные данные. 5

Реферат. 6

Введение. 7

1.Условия оптимальности диаграммы направленности. 7

2.Особенности антенн бегущей волны.. 7

3.Антены поверхностных волн. 10

4.Возбуждение антенны.. 11

5.Расчёт возбуждающего устройства. 13

Расчетная часть. 15

1.Выбор и расчет геометрических размеров антенны.. 15

2.Расчет ребристой замедляющей структуры.. 17

3.Расчет возбуждающего устройства. 19

4.Выбор размеров рупора. 22

5.Расчет коэффициента отражения. 23

7.Расчет диаграммы направленности. 26

8.Расчёт мощности, требуемой от генератора СВЧ. 29

9.Функциональная схема. 30

Список используемой литературы.. 31


Основные термины

1. Антенны – устройство, служащее связующим звеном между аппаратной частью радиолинии и свободным пространством.

2. Фидер – устройство предназначенное для передачи энергии электромагнитных волн по определённому адресу.

3. Антенная решётка – дискретная система идентичных излучателей, которые возбуждаются от общего генератора или от отдельных фазируемых генераторов.

4. Диаграмма направленности антенны – это графическое представление амплитудной функции направленности.

5. Ширина главного лепестка ДН – угол, заключённый между двумя лучами лепестка, вдоль которых угловая плотность мощность S от максимальной (S – 0, 0,1, 0,1).

6. Коэффициент направленного действия – это число, показывающее, во сколько раз необходимо увеличить мощность излучения при переходе от направленной антенны к ненаправленной при сохранении одинаковой напряжённости поля в месте приёма.

7. КПД приёмной антенны – это отношение мощности, отдаваемой антенной в нагрузку, к мощности, которую она отдавала бы в ту же нагрузку, если бы не имела потерь.

8. Фазовая функция направленности – зависимость фазы поля от углов в пространстве при фиксированном расстоянии от начала координат.

9. Волновое сопротивление – это отношение поперечных составляющих электрических и магнитных волн падающей волны.

10. Коэффициент отражения – отношение поперечных составляющих отражённой и падающей волны для волны электрического и магнитного типа.

11. Сопротивление вибратора – сопротивление излучения, которое характеризует уровень мощности вибратора и реактивное сопротивление, которое оценивает степень согласования вибратора с нагрузкой.

12. Оптимальная антенна – антенна, имеющая наименьшую ширину главного лепестка при заданной амплитуде боковых лепестков или имеющая наименьшую амплитуду боковых лепестков при заданной ширине главного лепестка.

13. Поляризационная характеристика – характеристика, описывающая изменения положения вектора напряжённости электрического поля в каждой точке пространства с течением времени.

14. Устройства СВЧ – это радиотехнические устройства, ограничивающие свободное распространение радиоволн и предназначенные для направленной передачи электромагнитной энергии.

Исходные данные

1. Средняя длина волны

,см = 3.5;

2. Ширина диаграммы направленности:

,град. = 30

, град. = 27

3. Мощность излучаемая антенноц

,Вт = 15

4. Длина фидера

,м = 4

5. КСВ = 1,15

Реферат

Число страниц: 25 ; Число рис.: 10 ; Листов формата А1: 1; Число источников: 5;

АНТЕННА ПОВЕРХНОСНОЙ ВОЛНЫ, РУПОР, КСВ, ДИАГРАММА НАПРАВЛЕНОСТИ, КПД, ГЕОМЕТРИЧЕСКИЕ РАЗМЕРЫ, КОЭФФИЦИЕНТ ОТРАЖЕНИЯ, ЗАМЕДЛЯЮЩАЯ СТРУКТУРА, ВОЗБУЖДАЮЩЕЕ УСТРОЙСТВО,ФИДЕР.

Цель работы — рассчитать основные параметры антенны поверхностной волны и линии ее питания, а также разработка эскиза антенны и линии её питания в масштабе с указанием основных геометрических размеров и графики нормированных диаграмм направленности антенны.

В ходе расчета заданной антенны были получены ее геометрические размеры, теоретические электрические параметры, также был проведен расчет мощности подводимой СВЧ генератором.

Данная антенна удобна для использования в качестве невыступающей или маловыступающей антенны устанавливаемых на объектах с малым аэродинамическим сопротивлением.

Введение

1.Условия оптимальности диаграммы направленности

Оптимальными диаграммами принято называть диаграммы, наилучшим образом удовлетворяющие различным практическим требованиям. В частности, к антеннам с оптимальной диаграммой направленности относятся антенны, диаграммы направленности которых имеют наименьший уровень боковых лепестков при заданной ширине главного максимума и, наоборот, наименьшую ширину главного максимума при заданном уровне боковых лепестков.

Оптимальные антенны позволяют получить высокую направленность при низком, наперёд заданном уровне боковых лепестков. Соответственно областью применения таких антенн являются системы, в которых предъявляются жёсткие требования к уровню бокового излучения. Как правило это приёмные антенны. Примером может служить антенна системы, работающей в условиях большого уровня помех, отстройка от которых производится пространственной селекцией.

Антенна с оптимальной диаграммой направленности представляет собой линейную или двумерную решётку излучателей, размещённых на одинаковом расстоянии друг от друга со специальным амплитудным распределением тока вдоль антенны. Если все излучатели возбуждаются в фазе, то луч направлен по нормали к антенне. Если задать постоянный сдвиг фаз между излучателями, то луч можно отклонить на необходимый угол.

2.Особенности антенн бегущей волны

Антенны бегущей волны представляют собой антенны, токи которых, форми-рующие поле излучения, могут быть представлены одной или несколькими бегущими волнами, распространяющимися вдоль какой-либо направляющей структуры. Последние по длине составляют обычно несколько длин волн. Антенны бегущей волны относятся к продольным излучателям, обеспечивающим излучение вдоль оси структуры или в направлении, близком к ней.

Представителями антенн бегущей волны являются антенны с замедленной фазовой скоростью. Расчет излучения этих антенн основывается на характеристиках бегущих волн с замедленной фазовой скоростью (

), направляемых, замедляющей структурой. Антенны тако- го вида различают, в основном, по замедляющей структуре. Существует большое разнообразие замедляющих структур, которые могут поддерживать либо волны Е, либо волны Н, либо те и другие, отличающихся конструктивным выполнением и формой поверхности. Антенны с плоскими и_цилиндрическими непрерывными замедляющими структурами называют антеннами поверхностных волн.

Примерами антенн с замедленной фазовой скоростью являются: диэлектрические стержневые антенны, спиральные антенны, антенны «волновой канал», различные виды антенн поверхностных волн и т. д. Они находят применение как в качестве самостоятельных антенн, так и в качестве элементов антенных решеток.

Распространение бегущей_ волны вдоль замедляющей структуры предполагает её достаточную электрическую длину. Это условие наиболее просто выполняется в диапазоне сверхвысоких частот. Поэтому антенны бегущей волны с замедленной фазовой скоростью, как правило, используются в дециметровом и сантиметровом диапазонах волн. Отличительным признаком волны с

является убывание амплитуды поля волны при удалении от замедляющей структуры по экспоненциальному закону, причем скорость убывания тем быстрее, чем больше замедление волны. Поэтому характерной особенностью антенн поверхностных волн являются их малые поперечные размеры, они удобны при использовании в качестве не выступающих или маловыступающих антенн, устанавливаемых на объектах с малым аэродинамическим сопротивлением.

Ширина диаграммы направленности рассматриваемых антенн прямо пропорциональна корню квадратному из отношения рабочей длины волны к длине замедляющей структуры, т. е. зависит от этого соотношения значительно слабее, чем в антеннах с поперечным излучением.

Приводимый ниже расчет антенн бегущей волны с замедленной фазовой скоростью основан на следующих предположениях:

1) распределение поля бегущей волны

, распространяющейся вдоль замедляющей структуры антенны, совпадает с полем бегущей волны над регулярной структурой с тем же замедлением;

2) отражение бегущей волны от конца замедляющей структуры пренебрежимо мало;

3) излучение возбудителя антенны достаточно мало и им можно пренебречь.

Эти предположения упрощают картину явлений, происходящих в антеннах бегущей волны, и позволяют определить распределение тока (поля) антенны по ее длине. В действительности отражения, возникающие при распространении бегущей„волны вдоль замедляющей структуры конечной длины, и излучение возбудителя бегущей волны искажают это распределение. Однако эти искажения при правильном выборе размеров антенны невелики и ими можно пренебречь.