Смекни!
smekni.com

Полупроводниковые диоды (стр. 5 из 6)

Рисунок 1.7. Идеализированные ВАХ диода

Наиболее широко используется первая идеализация: обратный ток и падение напряжения на прямосмещенном диоде равны нулю (рисунок 1.7, а). Погрешности идеализации максимальны: для германиевых диодов при обратных напряжениях; для кремниевых – при прямых. Желание учесть пороговое напряжение, увеличение падения при увеличении прямого тока, наличие обратного тока приводят к более сложным видам идеализированных ВАХ (рисунки 1.7, б, в, г).

Частотные свойства диода во многом определяются процессами перезаряда емкостей. Диффузионная емкость может иметь порядок от сотен до тысяч пикофарад, барьерная - обычно меньшая. Поэтому при прямом напряжений емкость р-п перехода определяется преимущественно диффузионной емкостью, а при обратном напряжении – барьерной емкостью. Преобразования сигнала с использованием диодов практически происходят при положительных смещающих напряжениях. Поэтому, с точки зрения повышения быстродействия, диод должен изготовляться так, чтобы по возможности ускорить процессы изменения объемного заряда неосновных носителей или вообще исключить их. Последнего можно добиться при использовании так называемого выпрямительного перехода Шотки. Этот переход образован контактом металл – полупроводник. Соответствующим выбором материалов можно добиться того, что высота потенциального барьера для электронов и дырок в месте контакта будет различной. В результате этого (при прямом смещении) прямой ток диода образуется только за счет движения основных носителей заряда. Так, например, при контакте n полупроводника с металлом ток образуется только за счет движения электронов из полупроводника в металл. Таким образом, в полупроводнике не создается объемный заряд неосновных для него носителей, что соответствует отсутствию диффузной емкости. Отсюда вытекает, что диоды, выполненные на основе перехода Шотки (диоды Шотки), обладают большим быстродействием, чем диоды с p-n переходом.

Кроме указанного, диоды Шотки отличаются от диодов с p-n переходом меньшим прямым падением напряжения из-за меньшей высоты потенциального барьера для основных носителей и большей допустимой плотностью тока, что связано с хорошим теплоотводом. Эти преимущества делают предпочтительным использование диодов Шотки при изготовлении мощных высокочастотных выпрямительных диодов.

Следует также отметить, что прямая ветвь вольтамперной характеристики диода Шотки из-за меньшего сопротивления прохождению тока ближе к идеальной.

Классификация диодов представлена в таблице 1.2, а условные обозначения – на рисунке 1.8. Рассмотрим некоторые из них, наиболее широко применяемые на практике.

Рисунок 1.8. Условные графические обозначения полупроводниковых приборов: 1 – выпрямительный и импульсный диод; 2 - стабилитрон и стабистор; 3 – симметричный стабилитрон; 4 – варикап; 5 – туннельный диод; 6 – излучающий диод; 7 – фотодиод: 8 – биполярный транзистор p-n р-типа; 9 – биполярный транзистор n p-n типа.

Таблица 1.2

Признак классификации Наименование диода
Площадь перехода Плоскостной Точечный
Полупроводниковый материал Германиевый Кремниевый Арсенид галлиевый
Назначение Выпрямительный Импульсный Сверхвысокочастотный Стабилитрон (стабистор) Варикап и т.д.
Принцип действия ТуннельныйДиод ШоткиИзлучающийФотодиод и др.

Выпрямительный диод использует вентильные свойства p-n перехода и применяется в выпрямителях переменного тока. В качестве исходного материала при изготовлении выпрямительных диодов используют в основном германий и кремний.

Выпрямительный диод представляет собой электронный ключ, управляемый приложенным к нему напряжением. При прямом напряжении ключ замкнут, при обратном – разомкнут. Однако в обоих случаях этот ключ не является идеальным. При подаче прямого напряжения за счет падения напряжения Uпр на открытом диоде выпрямленное напряжение, снимаемое с нагрузочного устройства, несколько ниже входного напряжения. Значение Uпр открытого диода не превышает для германиевых диодов 0,5 В, а у кремниевых 1,5 В.

Основными параметрами выпрямительных диодов являются:

IПР СР MAX – максимальное (за период входного напряжения) значение среднего прямого тока диода;

Iобр. ср – средний за период обратный ток, измеряемый при максимальном обратном

Uобр доп - допустимое наибольшее значение постоянного обратного напряжения диода;

fmax – максимально допустимая частота входного напряжения;

Uпр – прямое падение напряжения на диоде при заданном прямом токе.

Выпрямительные диоды классифицируют также по мощности и частоте.

По мощности: маломощные (Iпр ср max£ 0,3 А); средней мощности (0,3 А< Iпр ср max£ 10 А); большой мощности (Iпр ср max > 10 А).

По частоте: низкочастотные (fmax < 103 Гц); высокочастотные (fmax > 103 Гц).

В качестве выпрямительных применяются также диоды, выполненные на выпрямляющем переходе металл – полупроводник (диоды Шотки). Их отличает меньшее, чем у диодов с p-n переходом, напряжение Uпр и более высокие частотные характеристики. Выпрямительные диоды используют для выпрямления переменных токов частотой 50 Гц – 100 кГц.

Импульсный диод – полупроводниковый диод, имеющий малую длительность переходных процессов и использующий (как и выпрямительный диод) при своей работе прямую и обратную ветви ВАХ при сравнительно больших токах нагрузки.

Длительность переходных процессов в диоде обусловлена перезарядом емкостей Сдиф и Сбар. Так как импульсные диоды обычно работают при сравнительно больших прямых токах, то процессы накопления и рассасывания заряда являются превалирующими. Последнее явление определяет быстродействие диодов и характеризуется специальным параметром – временем восстановления τвос его обратного сопротивления. Время восстановления обратного сопротивления tвос– интервал времени от момента переключения до момента, когда обратный ток уменьшается до заданного уровня отсчета Iотс

В качестве импульсных широкое применение находят диоды Шотки.

Сверхвысокочастотный диод (СВЧ диод) – полупроводниковый диод, предназначенный для преобразования и обработки сверхвысокочастотного сигнала (до десятков и сотен гигагерц). Сверхвысокочастотные диоды широко применяются в устройствах генерации и усиления электромагнитных колебаний СВЧ диапазона, умножения частоты, модуляции, регулирования и ограничения сигналов и т.п.

Типичными представителями данной группы диодов являются смесительные (получение сигнала суммы или разности двух частот), детекторные (выделение постоянной составляющей СВЧ сигнала) и переключательные (управление уровнем мощности сверхвысокочастотного сигнала) диоды. Условное графическое обозначение импульсных и СВЧ диодов аналогично обозначению выпрямительных диодов (рис.2.6,1).

Стабилитрон применяются в нелинейных цепях постоянного тока для стабилизации напряжения. Как видно из рисунка 1.5, участок ВАХ диода, соответствующий электрическому пробою, характеризуется значительным изменением тока при практически незначительном изменении падения напряжения на диоде.

Этот участок используют для создания специализированных диодов – стабилитронов, которые, в свою очередь, являются основой так называемых параметрических стабилизаторах напряжения. Стабилитроны изготовляют, как правило, из кремния. При использовании высоколегированного кремния (высокая концентрация примесей, а, следовательно, и свободных носителей заряда) напряжение стабилизации понижается, а с уменьшением степени легирования кремния – повышается.

Напряжение стабилизации лежит в диапазоне от 3 до 180 В. Для стабилизации более низких напряжений используют прямую ветвь ВАХ, которая также характеризуется крутым нарастанием тока. Соединяя последовательно несколько диодов, удается перекрыть диапазон напряжений ниже 3 В. Диоды, применяемые для этой цели, называют стабисторами. Отличие стабилитрона от стабистора заключается в используемой для стабилизации напряжения ветви ВАХ. Поэтому будет существенные различия, если на стабилизирующий диод подать напряжение противоположной полярности по сравнению с рабочей:

через стабилитрон (если он не двухсторонний) потечет большой ток, величина которого будет ограничена внешними сопротивлениями;

в случаи использования стабистора ток будет определяться обратным током р-п перехода.

К основным параметрам стабилитрона относятся:

Uст– номинальное напряжение стабилизации при заданном токе;

τд – дифференциальное сопротивление при заданном токе;

Iст min – минимальный ток стабилизации, наименьшее значение тока стабилизации, при котором режим пробоя устойчив;

– дифференциальное сопротивление, равное отношению приращения напряжения стабилизации к вызвавшему его приращению тока стабилизации;

– температурный коэффициент напряжения (ТКН) стабилизации, где DUст – отклонение напряжения Uст от номинального значения Uст ном при изменении температуры в интервале DТ.

Варикап – полупроводниковый диод, действие которого основано на использовании зависимости зарядной емкости Сзар от значения приложенного напряжения. Это позволяет применять варикап в качестве элемента с электрически управляемой емкостью.

Рисунок 1.9. Вольт-фарадная характеристика варикапа

Основной характеристикой варикапа служит вольт-фарадная характеристика (рисунок 1.9) – зависимость емкости варикапа Св от значения приложенного обратного напряжения. В выпускаемых промышленностью варикапах значение емкости Св может изменяться от единиц до сотен пикофарад.