Постановка задачі оптимального керування (стр. 1 из 3)

Постановка задачі оптимального керування

1. Об’єкт керування

Розглянемо систему (об’єкт керування), поведінка якої характеризується двома видами параметрів – параметрами стану та параметрами керування.

Керована система – це система, що функціонує під впливом певного фактора, який здатний регулювати її еволюцію.

Як правило, існує безліч способів керування об'єктом з метою переведення системи в заданий стан. У зв'язку із цим виникає задача знайти такий спосіб керування, що у певному розумінні є оптимальним. При цьому система може зазнавати випадкових впливів. Для того, щоб вибирати із усіх можливих способів керування найкращий, необхідно визначити критерій якості.

Якщо еволюція системи за заданих початкових умов однозначно визначається завданням керування в кожний момент часу і не залежить від випадкових зовнішніх впливів, то система називається детермінованою.

Стан динамічного об'єкта у фіксований момент часу описується набором параметрів

, …,
, які називаються фазовими координатами (фазовими змінними), а вектор
називається фазовим вектором. Стан об'єкта в будь-який момент часу задається точкою
-вимірного простору
, що називається фазовим простором. Величини
, …,
залежно від контексту задачі визначають координати об'єкта, швидкість об'єкта та ін.

Рух об'єкта супроводжується зміною його фазових координат у часі

, тобто фазовий вектор є функцією змінної
:
.

Під час руху фазова точка

описує у фазовому просторі криву, що називається фазовою траєкторією.

Сукупність усіх фазових станів, у яких може перебувати керований об'єкт, складає множину станів

простору
. Таким чином, у будь-який момент часу повинні виконуватися обмеження на фазові координати:

:
.(1)

Множина фазового простору, що включає ті фазові стани, які є бажаними з точки зору цілей керування даним об’єктом, називається множиною мети керування

,
.

Керування об'єктом у кожний момент часу задається вектором керування

,
, де
, …,
– параметри керування.

У загальному випадку стан об'єкта в будь-який момент часу

залежить від того, яким було керування
до моменту часу
і не залежить від майбутнього керування.

У реальних об'єктах керування не може бути довільним, що пов'язано або з конструктивними особливостями об'єкта, або з обмеженістю ресурсів, або з умовами експлуатації об'єкта. У просторі керування

(просторі всіх можливих керувань) виділяється деяка множина
, що називається множиною припустимих керувань і містить сукупність тих функцій

,
,(2)

які, виходячи з умов задачі, можуть бути обрані за керування даною системою серед всіх можливих функцій керування. У прикладних задачах, як правило, область керування

є обмеженою замкнутою множиною.

Найчастіше за керування обирають кусково-неперервні вектор-функції, для яких кожна координата

має на будь-якому кінцевому інтервалі скінченне число точок розриву першого роду
, причому для визначеності припускають, що

,
,

і, крім того, керування

неперервно на кінцях відрізка
.

Кусково-неперервні керування

, такі що
, називаються припустимими.

Припустимим процесом називається пара функцій

, де
– припустиме керування, а
– відповідна йому фазова траєкторія.

Детермінованість керованого об'єкта означає, що вибір керування

,
за заданих початкових умов однозначно визначає траєкторію руху
,
.

Існує два підходи для визначення оптимального керування. Перший полягає в тому, що оптимальне керування будується як функція часу

. Таке керування називається програмним керуванням. Із прикладної точки зору такий підхід є недосконалим, тому що не враховує впливів на систему зовнішніх факторів.

Другий підхід полягає в тому, що оптимальне керування будується як функція фазових координат, тобто

. Таке керування називають синтезуючим (або позиційним), а відповідну задачу – задачею синтезу оптимальних керувань. Таке керування враховує поточний стан системи, але його пошук значно складніший порівняно з пошуком програмного керування.

Характер зміни фазової траєкторії об'єкта у часі задається законом руху. У теорії детермінованого керування найчастіше розглядаються динамічні системи за законом руху у формі диференціальних рівнянь

.(3)


Тут

– вектор-функція, компоненти якої неперервні по всій сукупності змінних і неперервно диференційовані по змінних
. Отже, якщо відоме керування
,
, то траєкторія об'єкта
може бути визначена як розв’язок диференціального рівняння

.

Якщо для функції

виконуються перераховані вище умови, то остання система задовольняє теоремі існування та єдиності розв’язку для задачі Коші, тобто за заданих початкових умов
вона має єдиний розв’язок в околі точки
.

Задача керування рухом полягає в тому, щоб відшукати припустиме керування, яке реалізує ціль. Це означає, що потрібно відшукати таку кусково-неперервну функцію

, визначену на відрізку
, для якої система (3) має розв’язок
, який задовольняє початковій умові
, обмеженню
і кінцевій умові
. Отже, задача детермінованого керування зводиться до розв’язання крайової задачі для системи
-го порядку (3) за заданих обмежень (1) і (2).


Copyright © MirZnanii.com 2015-2018. All rigths reserved.