Смекни!
smekni.com

Практическое кодирования по Хэммингу (стр. 2 из 2)

Возникает вопрос; а всегда ли, при любом числе информационных символов мы смогли бы поступать аналогичным образом? Нет, не смогли бы, если по-прежнему хотим, чтобы двоичный набор символов ex-1,ex-2,...,e0 указывал на адрес ошибки. Потому что уже когда число контрольных символов больше трех, мы не имеем права взять в качестве контрольных последние х символов. Легко убедиться, что при этом контрольная матрица непременно оказалась бы вырожденной, т.е. значение ее детерминанта оказалась бы равным нулю. Более того, даже в рассмотренном нами случае, когда число контрольных символов равно трем, мы не смогли бы в качестве контрольных взять, например, первые три символа. Во всех этих случаях определители контрольных матриц (вспомним, что столбцы этой матрицы суть двоичные записи номеров выбранных нами контрольных символов) оказываются равными нулю. Пусть, например, мы выбрали в качестве контрольных не пачку символов B5, B6, B7, а символы B1, B2, B3. Тогда нам пришлось бы иметь дело с квадратной матрицей третьего порядка, столбцы которой являются двоичными формами записи чисел 1, 2 и 3:

101 С = 011 . 000

Равенство нулю детерминанта этой матрицы свидетельствует о том, что систему (1.14б) - (1.16б) нельзя решить относительно переменных B1, B2, B3.

Таким образом, при выборе среди m + x символов x контрольных следует заботиться о том, чтобы определитель контрольной матрицы порядка x, столбцы которой представляют собой двоичные записи номеров выбранных символов, не оказался равным нулю. Именно чтобы избавиться от этих забот, Р. Хэмминг рекомендует в качестве контрольных взять символы с индексами I, 2, 4, 8 и т.д. Легко обнаружить, что при таком выборе контрольных символов мы всегда (независимо от их числа) будем иметь дело с единичной матрицей.

Кроме зависимости (10). на рисунке приведена также зависимость относительной избыточности от m. Легко заметить, что с увеличением m требуемый процент избыточности для обнаружения и исправления одиночной ошибки резко уменьшается. Столь неестественный результат является следствием искусственного, далекого от реальности допущения, что в рамках каждого кодового набора независимо от его длины m + x может произойти не более одной ошибки. Если же допустить возможность двух и более ошибок, то задача их обнаружения, и тем более исправления усложняется. Построить для этих случаев коды столь же элегантные, как код Р. Хэммннга для одиночной ошибки, пока не удалось.


ЛИТЕРАТУРА

1. Лидовский В.И. Теория информации. - М., «Высшая школа», 2002г. – 120с.

2. Метрология и радиоизмерения в телекоммуникационных системах. Учебник для ВУЗов. / В.И.Нефедов, В.И.Халкин, Е.В.Федоров и др. – М.: Высшая школа, 2001 г. – 383с.

3. Цапенко М.П. Измерительные информационные системы. - . – М.: Энергоатом издат, 2005. - 440с.

4. Зюко А.Г. , Кловский Д.Д., Назаров М.В., Финк Л.М. Теория передачи сигналов. М: Радио и связь, 2001 г. –368 с.

5. Б. Скляр. Цифровая связь. Теоретические основы и практическое применение. Изд. 2-е, испр.: Пер. с англ. – М.: Издательский дом «Вильямс», 2003 г. – 1104 с.