регистрация /  вход

Проектирование и испытание фототранзистора (стр. 1 из 4)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 2

1ОБЩИЕ СВЕДЕНИЯ О ТРАНЗИСТОРАХ.. 4

1.1Основные понятия. 4

1.2Принцип работы транзисторов. 6

1.2.1Расчет линейной зависимости токов в транзисторе. 10

2ФОТОТРАНЗИСТОР. 12

2.1Принцип работы.. 12

2.1.1Работа фототранзистора с общим эмиттером. 15

2.2Параметры фототранзисторов. 16

2.3Виды и конструкции фототранзисторов. 18

2.4МДП-фототранзисторы.. 18

2.5Гетерофототранзисторы.. 20

2.5.1Физические основы гетероперехода. 22

2.5.2Расчет параметров и характеристик фототранзистора на гетеропереходах 24

ВЫВОДЫ.. 28

СПИСОК ЛИТЕРАТУРЫ.. 29


ВВЕДЕНИЕ

Оптоэлектроника является одним из самых актуальных направлений современной электроники. Оптоэлектронные приборы характеризуются исключительной функциональной широтой, они успешно используются во всех звеньях информационных систем для генерации, преобразования, передачи, хранения и отображения информации. При создании оптоэлектронных приборов используется много новых физических явлений, синтезируются уникальные материалы, разрабатываются сверхпрецизионные технологии. Оптоэлектроника достигла стадии промышленной зрелости, но это только первоначальный этап, так как перспективы развития многих ее направлений практически безграничны. Новые направления чаще всего возникают как слияние и интеграция ряда уже известных достижений оптоэлектроники и традиционной микроэлектроники: таковы интегральная оптика и волоконно-оптические линии связи; оптические запоминающие устройства, опирающиеся на лазерную технику и голографию; оптические транспаранты, использующие успехи фотоэлектроники и нелинейной оптики; плоские безвакуумные средства отображения информации и др.

Оптоэлектронику как научно-техническое направление характеризуют три отличительные черты.

1. Физическую основу оптоэлектроники составляют явления, методы и средства, для которых принципиальны сочетание и неразрывность оптических и электронных процессов.

2. Техническую основу оптоэлектроники определяют конструктивно-технологические концепции современной микроэлектроники: миниатюризация элементов; предпочтительное развитие твердотельных плоскостных конструкций; интеграция элементов и функций; применение специальных сверхчистых материалов и методов прецизионной групповой обработки.

3. Функциональное назначение оптоэлектроники состоит в решении задач информатики: генерации (формировании) информации путем преобразования внешних воздействий в соответствующие электрические и оптические сигналы; передаче информации; преобразовании информации [11].


1 ОБЩИЕ СВЕДЕНИЯ О ТРАНЗИСТОРАХ

1.1 Основные понятия

В числе электропреобразовательных полупроводниковых приборов, т. е. приборов, служащих для преобразования электрических величин, важное место занимают транзисторы. Они представляют собой полупроводниковые приборы, пригодные для усиления мощности и имеющие три вывода или больше. В транзисторах может быть разное число переходов между областями с различной электропроводностью. Наиболее распространены транзисторы с двумя n–р-переходами, называемые биполярными, так как их работа основана на использовании носителей заряда обоих знаков. Первые транзисторы были точечными, но они работали недостаточно устойчиво. В настоящее время изготовляются и применяются исключительно плоскостные транзисторы [6].

Рисунок 1.1 - Принцип устройства (а) и условное графическое обозначение (б) плоскостного транзистора

Устройство плоскостного биполярного транзистора показано схематически на рис. 1.1. Он представляет собой пластину германия, или кремния, или другого полупроводника, в которой созданы три области с различной электропроводностью. Для примера взят транзистор типа n–р–n, имеющий среднюю область с дырочной, а две крайние области – с электронной электропроводностью. Широко применяются также транзисторы типа р–n–р, в которых дырочной электропроводностью обладают две крайние области, а средняя имеет электронную электропроводность.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом, в транзисторе имеются два n–р-перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором.

Эмиттером следует называть область транзистора, назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. А базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Расстояние между ними должно быть очень малым, не более единиц микрометров, т. е. область базы должна быть очень тонкой. Это является условием хорошей работы транзистора. Кроме того, концентрация примесей в базе всегда значительно меньше, чем в коллекторе и эмиттере. От базы, эмиттера и коллектора сделаны выводы [15].

Для величин, относящихся к базе, эмиттеру и коллектору, применяют в качестве индексов буквы «б», «э» и «к». Токи в проводах базы, эмиттера и коллектора обозначают соответственно iб , iэ , iк . Напряжения между электродами обозначают двойными индексами, например напряжение между базой и эмиттером iб-э , между коллектором и базой uк-б . На условном графическом обозначении транзисторов р–n–р и n–р–n стрелка показывает условное (от плюса к минусу) направление тока в проводе эмиттера при прямом напряжении на эмиттерном переходе.

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное. Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода. Если же на обоих переходах напряжение прямое, то транзистор работает в режиме насыщения. Активный режим является основным. Он используется в большинстве усилителей и генераторов. Поэтому мы подробно рассмотрим работу транзистора в активном режиме. Режимы отсечки и насыщения характерны для импульсной работы транзистора и также будут рассмотрены в дальнейшем.

В схемах с транзисторами обычно образуются две цепи. Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка. Для величин, относящихся к входной и выходной цепи, применяют соответственно индексы «вх» и «вых» или 1 и 2 [2].

1.2 Принцип работы транзисторов

Рассмотрим, прежде всего, как работает транзистор, для примера типа n–р–n, в режиме без нагрузки, когда включены только источники постоянных питающих напряжений E1 и Е2 (рис. 1.2, а). Полярность их такова, что на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Поэтому сопротивление эмиттерного перехода мало и для получения нормального тока в этом переходе достаточно напряжения Е1 в десятые доли вольта. Сопротивление коллекторного перехода велико, и напряжение Е2 обычно составляет единицы или десятки вольт. Из схемы на рис. 1.2, а видно, что напряжения между электродами транзистора связаны простой зависимостью [10]

uк-э =uк-б + uб-э (1.1)

При работе транзистора в активном режиме обычно всегда uб-э «uк-б и, следовательно, uк-э »uк-б .


Рисунок 1.2 - Движение электронов и дырок в транзисторах типа n-р-n и р-n-р

Принцип работы транзистора заключается в том, что прямое напряжение эмиттерного перехода, т. е. участка база – эмиттер (uб-э ), существенно влияет на токи эмиттера и коллектора: чем больше это напряжение, тем больше токи эмиттера и коллектора. При этом изменения тока коллектора лишь незначительно меньше изменений тока эмиттера. Таким образом, напряжение uб-э , т. е. входное напряжение, управляет током коллектора. Усиление электрических колебаний с помощью транзистора основано именно на этом явлении [9].

Физические процессы в транзисторе происходят следующим образом. При увеличении прямого входного напряжения uб-э понижается потенциальный барьер в эмиттерном переходе и соответственно возрастает ток через этот переход – ток эмиттера iэ ,. Электроны этого тока инжектируются из эмиттера в базу и благодаря диффузии проникают сквозь базу в коллекторный переход, увеличивая ток коллектора. Так как коллекторный переход работает при обратном напряжении, то в этом переходе возникают объемные заряды, показанные на рисунке кружками со знаками « + » и « –». Между ними возникает электрическое поле. Оно способствует продвижению (экстракции) через коллекторный переход электронов, пришедших сюда из эмиттера, т. е. втягивают электроны в область коллекторного перехода [4].

Если толщина базы достаточно мала и концентрация дырок в ней невелика, то большинство электронов, пройдя через базу, не успевает рекомбинировать с дырками базы и достигает коллекторного перехода. Лишь небольшая часть электронов рекомбинирует в базе с дырками. В результате рекомбинации возникает ток базы. Действительно, в установившемся режиме число дырок в базе должно быть неизменным. Вследствие рекомбинации каждую секунду сколько-то дырок исчезает; но столько же новых дырок возникает за счет того, что из базы уходит в направлении к плюсу источника Е1 такое же число электронов. Иначе говоря, в базе не может накапливаться много электронов. Если некоторое число инжектированных в базу из эмиттера электронов не доходит до коллектора, а остается в базе, рекомбинируя с дырками, то точно такое же число электронов должно уходить из базы в виде тока iб . Поскольку ток коллектора получается меньше тока эмиттера, то в соответствии с первым законом Кирхгофа всегда существует следующее соотношение между токами [3]: