Смекни!
smekni.com

Проектирование переключателя для коммутации электрических цепей постоянного и переменного тока низкой частоты (стр. 2 из 2)

Для обеспечения оптимальных контактных свойств используем электролитическое покрытие серебром (Ag).

Серебро обладает высокой электро- и теплопроводностью, хорошими технологическими свойствами. Технически чистое серебро содержит 99,99% Ag, остальное примеси, которые заметно снижают электропроводность. Недостатком серебра является его нестойкость к сероводороду, присутствующему в атмосфере больших городов и болотистых местностей. Однако окисление серебра под действием сероводорода образует столь тонкую пленку, что она легко разрушается трением при соединении и разъединении контактов.


3.2 Электрический и конструктивный расчет кнопки

3.2.1 Определение контактного усилия и переходного сопротивления

После выбора материала определяют необходимое контактное усилие Fk,которое определяется по формуле (3.1) согласно известной методики[5]:

(3.1)

где Е – модуль упругости (кгс/мм

);

h
–высота выступов;

- приведенные удельные сопротивления материалов, из которых выполнены контактные элементы;

,
- удельное электрическое сопротивление материалов контактных элементов для серебра и бронзы соответственно.

- коэффициент Пуассона;

RП – контактное переходное сопротивление

При расчете контактных усилий рекомендуется исходить из максимально допустимого падения напряжения U

(В) на контакте, при котором температура последнего достигает такого значения , когда его механические свойства начинают резко падать. Опытное значение величины падения напряжения [4] для серебра равно U
=0,8-0,1(В).

Определим допустимое падение напряжения на контакте по формуле:

U

=
; (3.2)

Получим

U

=
=0,03В.

Зная величину максимального тока I

=4A, проходящую через контакт определим величину контактного переходного сопротивления RП согласно[2]:

(3.3)

Имеем

R

=
Ом;

Подставив рассчитанные данные в формулу (3.1) получим:

.

Таблица 3.1 – Основные характеристики материалов

Марка материала r, мкОм×см Е, кгс/мм2 HB
,мкм
m
Бронза БрБ2 7 1,25×104 25 0,05 0,3
Серебро(Ag) 1,6 1×104 _ 0,05 0,3

3.2.2 Определение температуры локального перегрева

Определим температуру локального перегрева исходя из формулы(3.4).

, (3.4)

где r – удельное электрическое сопротивление тела контакта;

l – теплопроводность материала контактов;

Rп – переходное сопротивление;

I – ток проходящий через контакт.

Таблица 3.2 – Исходные данные для теплового расчета

Материал r, мкОм×см I, А Rп, Ом λ, Вт/мм∙°С
Бронза БрБ2 7 4 0,0075 0,84
Серебро(Ag) 1,6 4 0,0075 4,18

Оценим температуру локального перегрева для бронзы БрБ2:

(°С).

Оценим температуру локального перегрева для серебра :

(°С).

Полученные значения перегрева обеспечивают значительную температурную стабильность контакта, т.е. протекающий ток не вызывает изменение параметров перехода.


ЗАКЛЮЧЕНИЕ

В курсовом проекте, согласно требованиям технического задания, был спроектирована кнопка ,предназначенная для коммутации электрических цепей постоянного и переменного тока низкой частоты .

В ходе выполнения проекта произведены: выбор конструкционных материалов, необходимые расчеты конструктивных, электрических, механических и тепловых параметров изделия. Конструкция отработана на технологичность с учетом ее предполагаемого выпуска в условиях мелкосерийного производства.

Достоинствами конструкции разработанной кнопки являются – малые габариты, хорошие электрические характеристики, технологичность и относительная простота. Изделие имеет хорошие экономические показатели, т.к. имеет низкую себестоимость (в конструкции нет дорогостоящих материалов).

Спроектированная конструкция кнопки полностью отвечает требованиям технического задания и современным требованиям к подобного класса функциональным элементам.

ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. ГОСТ 15150-69. Машины, приборы и другие технические изделия. Исполнение для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

2. Рычина Т.А. Электрорадиоэлементы. – М.: Сов. радио, 1979.-336 с.

3. Белоусов А.К. Электрические разъёмные контакты в радиоэлектронной аппаратуре. Изд. 2-е перераб. и доп. - М.: Энергия, 2005.

4. А.Л.Харинский .Основы конструирования элементов радиоаппаратуры.Изд.2-е перераб. и доп.-Л.:Энергия,2001. – 464с.

5. Свитенко В.Н. Электрорадиоэлементы: Курсовое проектирование: Учебное пособие для вузов по спец. "Конструирование и производство РЭА". – М.: Высш. шк., 2007. – 207 с.

6. Левин А.П. Контакты электрических соединителей радиоэлектронной аппаратуры (расчёт и конструирование). - М.: "Сов. Радио", 1972. - 216 с.

7.Мальков М.Н.,Свитенко В.Н.Устройства функциональной электроники и электрорадиоэлементы: Конспекты лекций.Часть II.-Х: ХИРЭ,

1992. – с.