Смекни!
smekni.com

Разработка устройства, предназначенного для формирования импульсных сигналов с заданным периодом и скважностью - ШИМ-регулятор (стр. 2 из 4)

Алгоритм работы предлагаемой ШИМ приведен на рисунке 2.

Рисунок. 2. Алгоритм работы индексной ШИМ

Индексно - табличная реализация ШИМ требует существенно меньшего объема памяти, чем традиционная. Например, для получения указанных выше параметров (Fмmax = 60 Гц; диапазон регулирования (0.5-120)% дискретность регулирования примерно 0.5%) индексная ШИМ требует менее 11кБ. Экономия объема памяти позволяет довести соотношение Fт/Fн до 40 (тактовая частота ШИМ Fт примерно 48кГц) и, тем самым, увеличить точность аппроксимации несущего и модулирующего сигнала не менее, чем в 4 раза.

Таким образом, предлагаемая индексно - табличная ШИМ позволяет получить высокие показатели АИН и всего привода в целом, используя дешевые 8-разрядные микроконтроллеры. Тем более, все резервы этого класса МК еще не использованы, т.к. выпускаемые сейчас высокоскоростные модификации МК семейства MCS-51 (например, 80C3x0 фирмы DALLAS SEMICONDUCTOR) работают в 8.25 раза быстрее младших моделей этого семейства (КР1830ВЕ31).

1.2 Применение широтно-импульсной модуляции (ШИМ)

Широтно-импульсная модуляция, рассматриваемая в следующих примерах, используется в разных задачах - от формирования звукового сигнала и управления яркостью светодиодов до управления скоростью вращения электромотора. Все эти задачи основываются на базовом принципе ШИМ-сигнала - чем больше скважность импульсов, тем больше среднее значение напряжения (рисунок 3). Зависимость среднего напряжения от величины скважности является линейной:

VСР = скважность х Vмакс

Рисунок. 3. Зависимость среднего значения напряжения от скважности ШИМ

Выбор частоты ШИМ:

Частота ШИМ зависит от различных факторов. При увеличении частоты увеличиваются потери на переключение, емкость и индуктивность нагрузки влияет на изменение формы сигнала. Поэтому в микромощных устройствах следует выбирать минимально возможную частоту ШИМ, а в схемах с емкостной или индуктивной нагрузкой выбирать частоту исходя из анализа схемы.

1. Управление электродвигателями

ШИМ применяется для управления двигателями в импульсном режиме. По характеристикам двигателя необходимо подобрать значение частоты ШИМ, чтобы обеспечить оптимальные характеристики электропривода. При выборе задающей частоты важным критерием являются акустические шумы, создаваемые двигателем при работе. Коллекторные двигатели могут создавать звуковой шум на частотах от 20 Гц до 4 кГц. Для исключения этого нежелательного эффекта нужно выбирать частоту выше 4 кГц. На таких частотах акустического шума уже не будет, так как механические части имеют более низкие резонансные частоты.

2. Светодиоды и устройства освещения

ШИМ часто используется для изменения яркости световых приборов. Эффект мерцания может быть заметен на частотах ниже 50 Гц, поэтому на практике частота ШИМ выбирается около 100 Гц или выше.

3. Формирование аналогового сигнала

Рисунок. 4. Формирование аналогового сигнала с помощью ШИМ и ФНЧ

Выход ШИМ может применяться для цифро-аналогового преобразования с помощью нескольких внешних элементов. Преобразование ШИМ-сигнала в аналоговый осуществляется на основе фильтра ФНЧ (рис. 18). Для исключения появления в выходном сигнале нежелательных гармоник необходимо, чтобы частота модуляции (FPWM) была намного выше, чем частота выходного сигнала (FBW):

FPWM =К x FBW,

причем, чем больше значение К, тем меньше гармоник.

Для расчета фильтра применяется следующая формула:

RC=1/(2πFBW)

Выбрав значение емкости С, вычисляют значение резистора R. Подавление частоты ШИМ в выходном сигнале определяется выражением:

-10 x log[1 + (2πFPWMRC)2] (дБ)

Если подавление недостаточное, то увеличивают коэффициент К, увеличивая тем самым частоту модуляции.

4. Управление яркостью светодиодов

Для изменения яркости светодиодов можно использовать ШИМ. Для этого на выход подключается светодиод через резистор, ограничивающий максимальный ток. Изменяя скважность импульсов с помощью регистра в широких пределах (00...FF), можно менять яркость свечения. Необходимо отметить, что частота ШИМ должна быть не менее 100 Гц для устранения мерцания.

2 Выбор элементной базы

2.1 Микросхема КР580ВИ53

Микросхема КР580ВИ53 относится к микропроцессорному комплекту серии КР580, который предназначен для построения широкого класса цифровых устройств, контроллеров, микроЭВМ и микропроцессорных систем различного назначения.

Большая функциональная насыщенность, достаточно высокое быстродействие и средняя потребляемая мощность обеспечивают этому комплекту наибольшую распространенность применения. Особенностью комплекта являются фиксированные разрядность (8 разрядов) и система команд (совместима с микроЭВМ СМ1800), что однозначно определяет структуру устройств, построенных на его основе. Микросхемы КР580ГФ24, КР580ВК28, КР580ВК38, КР580ИР82, КР580ИР83, КР580ВЛ86, КР580ВЛ87 комплекта выполнены по биполярной технологии ТТЛШ, остальные — по nМОП-технологии. Всё микросхемы, входящие в МПК КР580, предназначены для работы в диапазоне температур —10... + 70 °С.

Микросхема КР580ВИ53 представляет собой устройство, формирующее программно-управляемые временные задержки (таймер) и содержит три независимых идентичных канала: 0, 1, 2. Каждый канал может работать в одном из шести основных режимов (режим 0—режим 5), иметь двоичный или двоично-десятичный тип счета, задаваемый программно путем предварительной записи в регистр режима каждого канала управляющего слова. Структурная схема КР580ВИ53представлена на рисунке 5.


Рисунок 5

Рассмотрим назначение основных узлов.

Схема выбора канала формирует сигналы управления каналами 0, 1, 2 внутренними и внешними передачами данных, приемом управляющих слов. Буфер канала данных состоит из восьми двунаправленных формирователей, имеющих на выходе состояние «Выключено», и осуществляет сопряжение таймера с шиной данных МП. Через буфер канала осуществляется запись управляющего слова в регистры режима и параметров счета в счетчики каждого канала. Схемы каналов 0, 1, 2 идентичны и содержат регистры режима, схемы управления, схемы синхронизации и счетчики. Регистр режима предназначен только для записи информации. Он принимает и хранит управляющее слово, код которого задаст режим работы канала, определяет тип счета и последовательность загрузки данных в счетчик. Схема управления канала синхронизирует работу счетчика и в соответствии с запрограммированным режимом и работу капала с работой МП.

Схема синхронизации канала формирует серию внутренних тактовых импульсов определенной длительности, которая зависит от внешней частоты синхронизации CLK и определяется внутренними времязадающими цепями схемы. Максимальная частота внешних сигналов синхронизации CLK не более 2,6 МГц.

Счетчик канала представляет собой 16-разрядный счетчик с предустановкой, работающий на вычитание в двоичном или двоично-десятичном коде. Максимальное число при счете равно 216 при работе в двоичном коде или 104 при работе в двоично-десятичном коде. Счетчики каналов независимы друг от друга и могут иметь различные режимы работы и типы счета. Запуск счета в каждом канале, его останов и продолжение осуществляются по соответствующему сигналу GATE «Разрешение канала».

Режимы работы (0—5) отличаются порядком формирования выходного напряжения па выводе OUT по окончании отсчета числа, загруженного в счетчик, по отношению к управляющему сигналу GATE.

В режиме 0 (прерывания терминального счета) на выходе канала формируется напряжение высокого уровня после отсчета числа, загруженного в счетчик. Сигнал GATE обеспечивает начало счета, его прерывание (при необходимости) и продолжение счета.

Перезагрузка счетчика во время счета прерывает текущий счет и возобновляет его по новой программе.

В режиме 1 (работы ждущего мультивибратора) на выходе канала формируется отрицательный импульс длительностью τ=TCLK·n, где TCLK —период тактовых импульсов; n — число, записанное в счетчик. Запуск ждущего мультивибратора осуществляется положительным фронтом сигнала GATE. Каждый положительный фронт этого сигнала запускает текущий счет или перезапускает счетчик сначала. Перезагрузка счетчика во время счета не влияет на текущий счет.

В режиме 2 (генерации частоты) таймер выполняет функцию делителя входной частоты CLK на n. При этом длительность положительной части периода равна TCLK·(n—1), а отрицательной TCLK. Перезагрузка счетчика во время счета не влияет на текущий счет.

Режим 3 (генерации меандра) аналогичен режиму 2, при этом длительность положительного и отрицательного полупериодов для четного числа n равна TCLK·n/2. Для нечетного числа n длительность положительного полупериода равна TCLK·n/2, а отрицательного TCLK·(n-1)/2.

В режиме 4 (программного формирования одиночного строба) па выходе канала формируется импульс отрицательной полярности длительностью τ=Tclk после отсчета числа, загруженного в счетчик. По сигналу GATE и после перезагрузки счетчика работа канала в режиме 4 аналогична режиму 0.

В режима 5 (аппаратного формирования одиночного строба) на выходе капала формируется импульс отрицательной полярности длительностью τ=Tclk после отсчета числа, загруженного в счетчик. Назначение выводов КР580ВИ53 приведено в таблице 1.

Таблица 1. Назначение выводов КР580ВИ53

Номер вывода Обозначение Назначение
19, 20 А0, А1 Адрес
1-8 D7—D0 Шина данных
9, 15, 18 CLK0—CLK2 Тактовые сигналы
10, 13, 17 OUT0—OUT2 Выход
11, 14, 16 GATE0—GATE2 Управление
12 GND Общий
21 CS Выбор микросхемы
22 RD Чтение
23 WR Запись
24 Ucc +5 В

Перечисленные выше режимы работы проиллюстрированы на рисунке 6.