Смекни!
smekni.com

Расчет антенны для земной станции спутниковой системы (стр. 4 из 5)

Целью нашего расчета является определение максимального (КНДmax):

;

2.6 Расчет диаграммы направленности облучателя

На первом этапе мы должны определить тип облучателя. Из всего многообразия типов и видов облучателей наиболее предпочтительным для нашего проекта является круглый волновод с переходом в конический рупор. Наша задача – это определение и графическое отображение главного бокового лепестка оптимального конического рупора. По этому лепестку мы должны убедится, что ДН облучателя уложена в угол φ2. Рисунок 2.6 содержит данные для определения главного лепестка. На нем указаны углы θ с осью рупора

, соответствующего различным уровням главного лепестка.

Рисунок 2.6

Для того, чтобы построить ДН облучателя нужно работать по следующему алгоритму (см. рис. 2.6). На оси абсцисс откладываем полученное значение

, затем, проведя нормаль к оси рупора, получаем значения углов θ и значений главного лепестка (см. рис. 2.7). Графическое представление диаграммы направленности облучателя изображено на рисунке 2.7. При этом мы можем видеть, что лепесток уложен в угол φ2.

2.7 Расчет амплитудного распределения в раскрыве зеркала антенны

Распределение амплитуд в раскрыве зеркала определяется по формуле:

,

где

– это коэффициент пересчета. Он определяется как:

;

Изменяя пределы угла Ψ от 0 до Ψ0 получим значения ρ(ψ) (см. таблицу 2.1).

Таблица 2.1

0 10 20 30 40 50 60 70 80 90 103
1 0,999 0,997 0,993 0,988 0,981 0,971 0,958 0,941 0,918 0,888

На основе этих значений строим амплитудное распределение без учета облучателя.

Для того, чтобы построить амплитудное распределение с учетом облучателя мы должны пересчитать

к зависимости от угла ψ. Данное преобразование целесообразно выполнить с использованием следующей формулы:

Результаты вычислений сведем в таблицу 2.2.

Таблица 2.2

10 20 30 40 50 60 70 80 90 100 103
2,98 6 9,11 12,36 15,79 19,486 23,53 28,024 33,13 39 41
0,985 0,95 0,9 0,82 0,67 0,535 0,43 0,3 0,21 0,145 0,13

Таким образом, амплитудное распределение с учетом облучателя будет иметь значения представленные в таблице 2.3

Таблица 2.3

0 10 20 30 40 50 60 70 80 90 100 103
1 0,985 0,949 0,89 0,82 0,67 0,519 0,412 0,28 0,19 0,13 0,114

По результатам вышеприведенных вычислений построим график зависимости (

и
) амплитудного распределения с учетом и без учета облучателя соответственно (см. рис. 2.8). На рисунке 2.8 представлено нормированное амплитудное распределение.

Рисунок 2.8 – амплитудное распределение в раскрыве антенны с учетом и без учета облучателя


2.8 Расчет диаграммы направленности антенны

Диаграмму направленности антенны будем определять по апертурному методу расчета поля излучения зеркальной антенны. В апертурном методе поле излучения антенны находится по известному полю в ее раскрыве. В этом методе в качестве излучающей рассматривается плоская поверхность раскрыва параболоида с синфазным полем и известным законом распределения его амплитуды.

Задача нахождения поля излучения зеркальной антенны при апертурном методе расчета разбивается на две:

1. Вначале находится поле в раскрыве антенны (внутренняя задача) (см. параграф 2.7).

2. По известному полю в раскрыве определяется поле излучения (внешняя задача).

Для упрощения последующих расчетов найденное значение амплитудного распределения целесообразно аппроксимировать интерполяционным полиномом:

.

Этот полином хорошо аппроксимирует фактическое распределение поля в раскрыве параболоида и для нахождения поля излучения при такой аппроксимации не требуется громоздких вычислений.

Коэффициенты полинома определяются из системы уравнений:


Для упрощения вычислений обычно можно ограничится тремя членами полинома, т.е. положить m=2.

Тогда

.

В этом случае в качестве узлов интерполяции берут точки в центре раскрыва зеркала

, на краю зеркала
и приблизительно в середине между этими крайними точками
. Коэффициенты этого полинома определяются системой уравнений:

где

,

Таким образом, получим:

подставим полученные величины во второе уравнение:


Подставив в первое уравнение полученные коэффициенты полинома, убеждаемся, что расчет выполнен, верно:

.

Так как мы ограничились тремя членами полинома, т.е. положили m=2, то нормированная диаграмма направленности опишется выражением:

,

где

Используя приложение MathCAD, определим необходимые данные, и результаты расчетов сведем в таблицу 2.4 для удобства построения. На рисунке 2.9 представлена диаграмма направленности антенны.



Таблица 2.4

u 0 1 2 3 4 5 6 7 8 9 10
Λ1(u) 1 0,88 0,59 0,24 -0,02 -0,13 -0,10 -0,01 0,054 0,059 0,02
Λ2(u) 1 0,92 0,71 0,45 0,2 0,03 -0,05 -0,05 -0,02 0,011 0,02
Λ3(u) 1 0,94 0,78 0,56 0,34 0,154 0,04 -0,02 -0,03 -0,02 0,006
F(u) 1 0,91 0,68 0,39 0,14 -0,02 -0,07 -0,05 -0,005 0,023 0,023

3. Техника безопасности и охрана труда

3.1 Классификация факторов, влияющих на условия труда

Условия труда – это совокупность факторов производственной среды, оказывающих влияние на здоровье и работоспособность человека в процессе труда. Условия труда должны исключать предпосылки для возникновения травм и профессиональных заболеваний.

Факторы, составляющие условия труда, обычно делятся на четыре основные группы.

Первая группа факторов – санитарно-гигиенические – включает показатели, характеризующие производственную среду рабочей зоны. Они зависят от используемого оборудования и технологических процессов, могут быть оценены количественно и нормированы. К первой группе факторов относятся: освещенность рабочего помещения, механические колебания, излучение.

Вторую группу составляют психофизиологические элементы, обусловленные самим процессом труда. Из этой группы только часть факторов может быть оценена количественно. К этим факторам относятся: физическая нагрузка, рабочая поза, нервно-психическая нагрузка, монотонность трудового процесса, режим труда и отдыха, трававмоопасность.