Смекни!
smekni.com

Расчет измерительных преобразователей. Полупроводниковый диод (стр. 4 из 5)

В отличии от существующей теории мы рассматриваем векторы напряженностей, а не разностей потенциалов. Это оказывается решающим фактором для независимого анализа группы параллельных диодов, поскольку появляются участки с противоположным направлением напряженности. На рис. 35 схематично изображен ДЕ, в котором дополнительные переходы объединены в один. Теперь анализ работы ДЕ распадается на несколько частей: состояние основного и дополнительного переходов, а также включения или выключения паразитных режимов. Число сочетаний режимов 4-х диодов становится большим, поэтому анализ работы диода проводим раздельно.

Рисунок 35 - Схематическое представление ДЕ.


Введем признаки принадлежности параметров тому или иному диоду: параметры паразитных диодов будем отмечать точкой вверху, что позволит нам сохранить обозначения без индексов для нормального диода основного перехода.

В исходном состоянии замыкание внешних выводов ДЕ приводит к глубокому запиранию обоих переходов (рис.4), что означает включение паразитных диодов. Приложив внешнее прямое напряжение, мы еще сильнее открываем диод

, но запираем диод
, приближая основной переход к открыванию. Именно в этот момент происходят самые любопытные процессы. Поэтому целесообразно дальнейшее рассмотрение сосредоточить на этой фазе переключения основного перехода.

На рисунке 36 показаны ВАХ диодов основного перехода.

Рис. 36. Вольтамперные характеристики нормального (1) и паразитного (2) диодов основного перехода.

В момент достижения напряжения пятки Ud= UП паразитный диод закрывается. Одновременно открывается нормальный диод и на участке кривой 2, помеченном пунктирной линией, их токи будут вычитаться, что и приводит к появлению горба результирующей ВАХ (рис.37). Рост тока нормального диода приводит к еще одному нюансу, а именно – к появлению положительной обратной связи. Она создается за счет падения напряжения на ширине

перехода протекающим током и, суммируясь с исходной разностью потенциалов ∆φ , заметно повышает крутизну ветви 1. поэтому результирующая ВАХ (рис. 4) представляет собой не просто разность токов двух диодов (участок АБ), а еще и некоторое усиление ее.

Рисунок 37 - Результирующая ВАХ диода Есаки.

Нагрузочная линия задает наклон переключения рабочей точки диода. В прямом направлении переключение показано стрелкой из точки А, в обратном – выбор происходит автоматически в момент равенства динамического сопротивления диодов.

Ток паразитного диода выражается аналогично обычному диоду и для прямого смещения запишем

(1),

где a- коэффициент, характеризующий долю поперечного сечения канала, перешедшую к паразитному диоду;

b- коэффициент, характеризующий разность потенциалов на переходе паразитного диода относительно – основного

.

Динамическое сопротивление паразитного диода определяем дифференцированием

(2).

Модификации диода Есаки.

Степень легирования крайних зон ДЕ определяет, насколько открыты паразитные диоды при нуле входного напряжения. Для изменения величины

свобода есть только в перепаде потенциалов дополнительных переходов

. Как изменится результирующая ВАХ диода? С уменьшением
кривая 2 на рис. 3 сдвигается вниз и влево, уменьшая пиковое значение тока. Горб на результирующей ВАХ уменьшается и может исчезнуть (рис. 38). Этот вариант ДЕ получил название обращенный диод, поскольку для малых напряжений прямая ветвь ВАХ может использоваться в качестве обратной.

Рисунок 38 - Вольтамперная характеристика обращенного диода.

Если наряду со снижением разности потенциалов дополнительного перехода выполнить его несколько более широким, паразитный диод

перестанет открываться и станет похожим на обычный, но только до некоторого значения обратного напряжения, называемого напряжением пробоя. Обратная ветвь такого диода сдвигается влево, как показано на рисунке 39.

Рисунок 39 – Вольтамперная характеристика стабилитрона.

Этот вид пробоя назван зенеровским (по другой транскрипции ценеровским) по имени немецкого физика Zener, впервые обнаружившего это явление.

Еще один очень интересный эффект использует принцип ДЕ – лавинный диод. В зенеровском пробое открывается нормальный диод дополнительного перехода, имеющего меньшую крутизну потенциалов (рис. ), чем основной переход. Если из диода Есаки исключить (или сильно уменьшить) дополнительное легирование краев канала и расширить зону перехода (теперь речь только об основном переходе), то образование паразитного диода

может происходить при очень больших напряжениях. В этом случае, как и в случае «туннельного диода» также появляется положительная обратная связь за счет малого (но уже заметного) обратного тока. Крутизна образовавшегося паразитного диода повышается и его ВАХ стремится занять положение, соответствующее меньшему напряжению в сравнении с напряжением пробоя (рис.40).

Рисунок 40

В результате, получилось физическое описание процессов, не прибегая к уловкам и не вводя туннельных и прочих эффектов. А названные типы полупроводниковых приборов относятся к одному классу – диодов Есаки.

10. Эффекты полупроводника

Тоннельный эффект.

Тоннельный эффект (открыт в 1958 году в Японии) проявляется на p-n переходе в вырожденных полупроводниках.

Вырожденный полупроводник – это полупроводник с очень высокой концентрацией донорной или акцепторной примеси. (Концентрация – 1024 атомов примеси на 1 куб. см. полупроводника).

В вырожденных полупроводниках очень тонкий p-n переход: его ширина составляет сотые доли микрона, а напряжённость внутреннего поля p-n перехода составляет Ep-n ≈ 108 B/м, что обеспечивает очень высокий потенциальный барьер. Основные носители заряда не могут преодолеть этот потенциальный барьер, но за счёт малой его ширины как бы механически пробивают в нём тоннели, через которые проходят другие носители зарядов. Следовательно, свойство односторонней проводимости на p-n переходе при тоннельном эффекте отсутствует, а ток через p-n переход будет иметь три составляющие:

I = Iт.пр. – Iт.обр. + Iпр.,

где Iт.пр. – прямой тоннельный ток, за счёт прохождения зарядов через тоннели при прямом включении;

Iт.обр. – обратный тоннельный ток, тот же самый, что и прямой, но при обратном включении;

Iпр. – прямой ток проводимости. Вызван носителями заряда, преодолевающими потенциальный барьер при относительно высоком прямом напряжении.

Вольтамперная характеристика p-n перехода при тоннельном эффекте будет иметь вид, изображённый на рисунке 41.

Рисунок 41

На участке АВ прямой тоннельный ток уменьшается за счёт снижения потенциального барьера и в точке В он становится равным нулю, а ток проводимости незначительно возрастает. За счёт этого общий ток на участке АВ уменьшается. Особенностью тоннельного эффекта является то, что на участке АВ характеристики имеет место отрицательное динамическое сопротивление.

Тоннельный эффект применяется в тоннельных диодах, которые используются в схемах генераторов гармонических колебаний и как маломощные бесконтактные переключающие устройства.

Эффект Гана

Эффект Гана проявляется в полупроводниках n-типа проводимости в сильных электрических полях.

Рисунок 42

Участок ОА – линейный участок, на котором соблюдается закон Ома. Участок АВ – при сравнительно больших напряжённостях электрического поля уменьшается подвижность электронов (показывает, как легко электроны проходят сквозь кристаллическую решётку проводника) за счёт увеличения амплитуд колебания атомов в узлах кристаллической решётки. И за счёт этого рост тока замедляется. Участок ВС – сильное уменьшение подвижности электронов, что приводит к уменьшению тока. Участок CD – при очень больших напряжённостях значительно увеличивается генерация носителей зарядов и, хотя подвижность электронов уменьшается, ток возрастает за счёт увеличения количества зарядов.

Сущность эффекта Гана состоит в том, что если в полупроводнике создать напряжённость электрического поля, большую Екр, но меньшую Епор, т. е. на участке ВС характеристики, то в полупроводнике возникнут электрические колебания сверхвысокой частоты (СВЧ).

Эффект Гана применяется в диодах Гана, которые используются как маломощные генераторы СВЧ.