Смекни!
smekni.com

Расчет линии связи для системы телевидения (стр. 6 из 14)

На приемной стороне декодер осуществляет все вышеописанные операции в обратном порядке, восстанавливая на выходе изображение, весьма близкое к исходному.

Основной областью использования цифрового телевидения стали системы непосредственного ТВ вещания в диапазоне 12 ГГц. В США уже функционирует первая такая система DirecTV/USSB, предоставляющая абонентам возможность приема более чем 170 ТВ программ. Производится внедрение методов цифровой обработки в европейских спутниковых системах.

Телевидение высокой четкости

Под телевидением высокой четкости (ТВЧ) понимают передачу изображения с числом строк, приблизительно вдвое превышающим показатель у существующих стандартов, и форматом кадра (отношение ширины кадра к его высоте) 16:9. Объем информации, содержащийся в каждом кадре ТВЧ изображения, возрастает в пять-шесть раз по сравнению с обычным телевидением. На ТВЧ изображении отсутствуют дефекты, свойственные принятым сегодня стандартам ТВ вещания, — недостаточная разрешающая способность, заметность поднесущей, перекрестные искажения сигналов яркости и цветности, мерцание изображения из-за недостаточно высокой частоты кадров, дрожание строк и т.д. ТВЧ обеспечивает существенное повышение качества ТВ изображения, приближая его восприятие к зрительному восприятию естественных, натуральных сцен и сюжетов. Такое радикальное улучшение качества изображения не может быть достигнуто ни модификацией существующих стандартных систем цветного ТВ, ни ТВ системами повышенного качества.

В США, Японии, европейских странах в последние пять-семь лет ведутся многочисленные разработки новых ТВ стандартов с улучшенным качеством изображения. Разработаны совместимые системы телевидения повышенного качества (ТВПК), в которых устранены наиболее характерные искажения ТВ сигнала, несколько увеличена разрешающая способность, введен формат изображения 16:9 (стандарты MAC, PAL-плюс). Эти системы нельзя отнести к ТВЧ, так как параметры разложения изображения не изменяются.

Среди систем ТВЧ с временным разделением наиболее известна и одно время даже претендовала на роль мирового стандарта японская система MUSE (MultipleSub-NyquistSamplingEncoding -кодирование с многократной субдискретизацией), предназначенная для передачи сигналов ТВЧ по спутниковому каналу с полосой 27 (24) МГц. Передача сигналов изображения в спутниковом канале осуществляется с помощью ЧМ, сигнала звукового сопровождения — методом четырехпозиционной ФМ. Основные характеристики сигнала MUSE:

Развертка...............................……… Чересстрочная с перемежением 2:1

Число строк исходного изображения .................... 1125

Частота полей, Гц .........................………............... 60

Формат изображения ..................…….................... 16:9

Разрешающая способность, пиксел:

--в канале яркости ........................…............ 1496

--в канале цветности ..................................... 374

Частота дискретизации, МГц …............................ 48,6

Полоса частот видеосигнала

по уровню — 3 дБ, МГц. ................……................8,1

Метод модуляции несущей ......…......................... ЧМ

Девиация частоты, МГц. ........……....................... 10,2

Полоса частот радиоканала, МГц ......................... 24

Необходимое отношение несущая - шум

на приеме. дБ .....................................…………...... 17

Число звуковых каналов ................………………. 2/4

Цифровая фазовая модуляция или фазовая манипуляция

Чтобы передавать данные с высокой скоростью, требуемой для цифрового спутникового ТВ, необходимо либо уменьшить число циклов на положение передаваемого сигнала, либо увеличить частоту передачи сигнала. Ясно, что увеличивать частоту передачи сигнала неразумно, поскольку существует ограничение ширины полосы пропускания канала. Существует также ограничение числа циклов, поскольку обычные демодуляторы, такие, как демодуляторы с фазовой автоподстройкой частоты, обладают ограниченной переходной характеристикой, и процесс захвата новой частоты может занять у них несколько циклов. В связи с тем, что каждую цифру необходимо передать не более, чем за один цикл, для захвата частоты просто недостаточно времени, поэтому следует признать, что применение FSK для спутникового ТВ было бы нецелесообразным, так как потребовало бы слишком широкой полосы частот. В этом случае нужно использовать цифровую систему передачи, которая позволяет увеличить скорость передачи данных без необходимости увеличения полосы частот. Сам модулирующий сигнал перед передачей можно сжать при помощи различных методов, но остается проблема, связанная с применением более эффективного метода модуляции, чем FSK (частотно фазовая манипуляция ). Таким методом может служить одночастотный вариант модуляции - цифровая фазовая модуляция, которую также называют фазовой манипуляцией (PSK). При данном методе изменяется фаза несущей, а не ее частота.

Фазовая модуляция (ФМ) имеет близкое отношение к частотной и хорошо подходит для многопозиционной цифровой передачи сигнала. Как и при ЧМ, анализ спектра является достаточно сложным и оба спектра оказываются похожими. Основной процесс фазовой манипуляции показан на рис. 2.4,а. Фаза несущей изменяется по цифровому сигналу сообщения. В данном примере сигнал двоичного 0 передается в качестве сигнала о сдвиге фазы несущей на 0°, а сигнал двоичной 1 представляет сдвиг фазы на 180°. Сдвиг фазы несущей на 180° можно осуществить путем ее умножения на -1 (инверсии). Поэтому если в сигнале сообщения для изменения бинарных положений 1 и 0 в положения -1 и +1 используется преобразование с отрицательной логикой, то двухфазовая PSK может осуществляться при помощи простого умножителя, как это показано на рис. 2.5,а. Изменение фазы, происходящее под воздействием сигнала сообщения, называется девиацией фазы, и ее величина может меняться при изменении чувствительности (крутизны характеристики) модулятора. В принципе,

ЧМ может выполняться путем интегрирования сигнала сообщения и подачи его на фазовый модулятор. И наоборот, фазовая модуляция может осуществляться путем дифференцирования сигнала сообщения и подачи его на частотный модулятор. Этим и объясняется сходство.

Рис 2.4. Фазовая манипуляция PSK (a), относительная фазовая манипуляция DPSK (б).

Процесс демодуляции в приемнике, показанный на рис. 2.5.б, можно выполнить, используя детектор произведения (перемножающий демодулятор), который эффективно перемножает принятый PSK сигнал с местной генерируемой опорной несущей, восстанавливая таким образом оригинальный сигнал сообщения.


Рис. 2.5. Модуляция методом PSK (a), демодуляция методом PSK (б).

Относительная фазовая манипуляция

При демодуляции трудно точно генерировать сигнал опорной несущей, о которой говорилось в предыдущем примере с использованием метода PSK. поскольку фазовые соотношения на любой частоте из-запонижающего преобразования могут медленно меняться при прохождении сигнала по линии связи. Решение данной проблемы состоит в использовании относительной фазовой манипуляции (DPSK), где изменения фазы происходят по отношению к фазе предыдущего положения передаваемого сигнала. Принцип действия DPSK для сравнения с методом обычной PSK показан на рис 2.4.б. Частота опорной несущей во время демодуляции восстанавливается только из предыдущего принятого положения сигнала, что в значительной степени устраняет воздействие непредсказуемых (случайных) изменений фазы на линии связи. Система работает следующим образом. Фазой опорной несущей для сигнала В является фаза сигнала А. Фаза опорной несущей для сигнала С - это фаза несущей В, и т. д. В действительности, значений фазовых сдвигов на 0° следует избегать, так как приемник всегда принимает сдвиги фазы на скорости передачи данных. Например, +90° и +270° для 0 и 1 могут быть использованы вместо 0° и 180°; таким образом исключаются длинные периоды немодулированной несущей, которые могут привести к значительной концентрации энергии в определенных участках спектра, в результате чего возникает интерференция.

Квадратурная фазовая манипуляция

Квадратурная фазовая манипуляция (QPSK или 4-PSK) представляет собой дальнейшее развитие метода PSK, в котором для заданной частоты несущей скорость передачи данных эффективно удваиваетсябез увеличения скорости передачи сигнала. Недостатком данного метода является падение отношения S/N при демодуляции. При QPSK каждая позиция сигнала кодируется дибитом. Обычно используются четыре позиции (положения) сдвига фазы на 90°: +45°, +135°, +225° и +315°. Не забудьте, что положение фазы 0° редко используют на практике, чтобы исключить длинные периоды немодулированной несущей. Переход от двухпозиционной системы передачи сигнала к четырехпозиционной означает, что скорость передачи данных, измеряемая в битах в секунду, больше, чем скорость передачи сигнала в бодах. Фазовые соотношения в системе QPSK, где четыре дибита кодируются четырьмя значениями сдвига фазы, приведены в табл. 2.2. Основной принцип возможной реализации QPSK-модуляции сигнала показан на рис. 2.6. Две несущие одной и той же частоты, сдвиг фаз между которыми составляет 90°, поступают на пару умножителей. На каждый умножитель с одинаковой скоростью подаются цифровые входные сигналы +1 (сигнал двоичного 0) или -1 (сигнал двоичной 1), использующие, как и в предыдущих примерах, отрицательную логику. Выходные сигналы умножителей представляют собой такой же кодированный сигнал, как и в описанном ранее простом случае. То есть двоичная единица представлена сдвигом фазы на 180°, а двоичный нуль — сдвигом фазы на 0°. Основное отличие от обычной PSK состоит в том, каким образом эти выходные сигналы комбинируются сумматором. Сумматор создает окончательный выходной сигнал, соответствующий четырем возможным комбинациям сигнала сообщения, как это показано в табл. 2.2. Фазовая диаграмма (см. рис. 2.7.) представляет в фазовой форме положения табл. 2.3. и четко демонстрирует, как четыре значения сдвига фазы, или кодовых вектора, на +45°, +135°, +225° и +315° представляют дибит, получаемый от сложения двух выходных модулированных сигналов.