Расчёт и проектирование вторичного источника питания

СОДЕРЖАНИЕ

Введение

1 Анализ технического задания

2 Разработка принципиальной схемы

3 Расчет элементов схемы

4 Анализ спроектированного устройства на ЭВМ

Выводы

Перечень ссылок

Приложение А

Приложение Б

Приложение В


Введение

Вторичные источники питания используются в РЭА, питающейся от сети переменного тока, для получения напряжений постоянного и переменного тока,необходимых для питания различных узлов. Недостатком данного типа блока питания является большая материалоёмкость, меньшей удельной мощностью и более низким КПД, в отличии от импульсного источника питания – это обусловлено наличием трансформатора питания работающего на частоте 50 Гц и стабилизатора компенсационного типа непрерывного действия. В данный момент в РЭА чаще стали использоваться другие виды источников питания.


1 Анализ технического задания

В донной курсовой работе необходимо рассчитать и спроектироватьвторичный источник питания по таким исходным данным

Uвых=12 В

Uвых=0.4 B

f =50 Гц

Uвх=15 B

Uвх=220 B

Kст=100

Iн=2 mA

На рис. 1.1 изображена структурная схема вторичного источника питания.

Трансформатор питания выпрямитель Сглаживающий фильтр Стабилизатор напряжения

Рис.1.1 – Структурная схема вторичного источника питания

Выпрямительные устройства (выпрямители) относятся к вторичным источникам электропитания. Они используются для преобразования переменного напряжения в постоянное. Источником переменного напряжения может быть сеть переменного тока частотой 50 Гц или преобразователь постоянного напряжения в переменное повышенной частоты.

Выпрямитель в большинстве случаев состоит из трансформаторапитания, изменяющего напряжение,комплекта вентилей – выпрямляющих переменное напряжение и сглаживающего фильтра. Сопротивление вентиля в прямом направлении в сотни раз меньше, чем в обратном. В настоящее время в основном используются полупроводниковые вентили.

Сглаживающие фильтры включают между выпрямителем и нагрузкой

Для уменьшения пульсаций (переменной составляющей) выпрямленного напряжения. Наиболее часто используются фильтры, состоящие из дросселяи конденсатора (рис.1.1,а) или из резистора и конденсатора (рис.1.2,а).

Р ис. 1.2 - Схемы сглаживающих фильтров

На рис. 1.3 - изображена однофазная мостовая схема выпрямителя

Рис.1.3- Однофазная мостовая схема выпрямителя

Стабилизаторы напряжения имеют такие основные параметры : Коэффициент нестабильности по напряжению – отношение производной выходного напряжения по входному напряжению к выходному напряжению:

Кнu=

Uвых*100% / Uвых*
Uвх (1.1)


Коэффициент нестабильности по току – относительное изменение выходного напряжения при изменении выходного тока в определенных пределах:

Кнi=

Uвых*100% /
Iвых(1.2)

Коэффициент стабилизации напряжения – отношение относительных изменений входного и выходного напряжений при постоянном выходном токе :

Кст=1/(Кну*Uвх)(1.3)

Выходное сопротивление стабилитрона – производная выходного напряжения по выходному току :

Rвых=dUвых/dIвых(1.4)

Коэффициент полезного действия – отношение мощности на выходе стабилитрона к мощности на входе.

Коэффициент сглаживания пульсаций – соотношение напряжения пульсаций на входе и на выходе.

Во вторичных источниках питания используются параметрические

и компенсационные стабилизаторы напряжения.

Наиболее простыми стабилизаторами напряжения являются параметрические стабилизаторы напряжения.Они характеризуются сравнительно невысокими коэффициентами стабилизации, большим выходным сопротивлением, низким КПД. В таких стабилизаторах невозможно получить точное значение выходного напряжения и регулировать его.

На рис.1.4 изображена схема параметрического стабилизатора напряжения.

Рис.1.4 - С хема параметрического стабилизатора напряжения

Компенсационные стабилизаторы напряжения представляют собой систему автоматического регулирования, в которой с заданной точностью поддерживается постоянным напряжение на выходе независимо от изменения входного напряжения и тока нагрузки. На рис.1.5 изображена одна из схем компенсационного стабилизатора напряжения.

Рис.1.5 - С хем компенсационного стабилизатора напряжения


2 Разработка принципиальной схемы

На входе вторичного источника питания можно поставить схему однофазного выпрямителя напряжения изображенную на рис.1.3.

После выпрямителя поставим сглаживающий R-C фильтр изображений

на рис.1.2,а.

Потом необходимо рассчитать и установить одну из схем параметрического стабилизатора напряжения.Например схему изображенную на рис.1.5.

Схема вторичного источника питания будет иметь вид:

Рис.1.5 - Схема вторичного источника питания

3 Расчет элементов схемы

1. Расчет следует производить «от нагрузки». Для чего по исходным данным определим RН :

(3.1)

.

2. Зададимся коэффициентом стабилизации (из исходных данных) :

К = 100.

3. Находим величину минимального напряжения на входе стабилизатора

UВХ.МИН = UВЫХ + UК.Э1 МИН + UВЫХ, (3.2)

где UК.Э1 МИН — минимально допустимое напряжение между эмиттером и

коллектором регулирующего транзистора, при котором работа

еще происходит на линейном участке выходной характеристики

IK = F (UК.Э) при I0 = const;

UВЫХ — отклонение напряжения на выходе стабилизатора от номинального.

Напряжение UК.Э1 МИН для большинства транзисторов не превышает 1—3 в. При расчете UК.Э1 МИН можно принимать равным 3 в. Величина напряжения UВЫХ для нашего случая определяется верхним пределом регулировки выходногонапряжения, т. е. UВЫХ= 0,4 В. Таким образом,

UВХ.МИН = 12 + 3 + 0.4 =15.4 B.

Номинальное и максимальное напряжения на входе стабилизатора с учетом допустимых отклонений входного напряжения (поскольку нестабильность напряжения питающей сети нам не задана, возьмем отклонение UВХ = ± 10%, что вполне достаточно для обеспечения заданных показателей качества) соответственно равны

(3.3)

(3.4)

3. Определяем максимальное падение напряжения на участке

эмиттер — коллектор регулирующего транзистора

UК.Э1 МАКС = UВХ. МАКС — UВЫХ, (3.5)

UК.Э1 МАКС = 18,2 — 12 = 6,2 в.

4. Находим максимальную мощность, рассеиваемую на коллекторе

регулирующего транзистора,

РК1 МАКС = UК.Э1 МАКС • I ВЫХ. МАКС, (3.6)

где I ВЫХ. МАКС — максимальное значение тока нагрузки. Для нашего случая (при неизменном токе нагрузки)

I ВЫХ. МАКС = I ВЫХ. = 0,1 А

Следовательно

РК1 МАКС = 8,2 • 0,1 = 0,82 Вт.

5. Выбираем тип регулирующего транзистора.

При выборе необходимо выполнить условия

I К1. МАКС I ВЫХ.  I К1. МАКС. ДОП.; (3.7)

UК.Э1 МАКС UК.Э1 МАКС. ДОП.; (3.8)

РК1 МАКС  РК1 МАКС. ДОП. (3.9)


Пользуясь таблицами соответствующих справочников выбираем транзистор Т1 типа П4БЭ с такими параметрами: коэффициент усиления по току В1 = 20, максимально допустимое напряжение коллектор — эмиттер UК.Э1 МАКС. ДОП. = 60 в;

максимально допустимый ток коллектора I К1. МАКС. ДОП. = 5 а; максимально допустимая мощность, рассеиваемая на коллекторе (без дополнительного теплоотвода), РК1 МАКС. ДОП = 3 вт.

Таким образом, для выбранного транзистора П4БЭ условия (3.7)  (3.9) выполняются.

6. Выбираем тип согласующего транзистора Т2. Транзистор Т2 предназначен для согласования большого выходного сопротивления (порядка 10 ком) усилителя постоянного тока, собранного на транзисторе Т3, с малым входным сопротивлением (порядка 10 ом) регулирующего транзистора Т1.

Кроме того, транзисторы Т1 и Т2, образуя составной транзистор, имеют общий коэффициент усиления по току

Вобщ. = В1 • В2 (3.10)

где В1 и В2 — коэффициенты усиления по току транзисторов Т1 и Т2. Большой коэффициент усиления по току Вобщ. позволяет значительно повысить коэффициент стабилизации схемы по напряжению.

Принимая

I К2 I Э2.= I б1, (3.11)

где I К2 иI Э2. — токи коллектора и эмиттера транзистора Т2 ; I б1 — ток базы транзистора Т1 и учитывая, что


Copyright © MirZnanii.com 2015-2018. All rigths reserved.