Резистор переменного сопротивления типа А (стр. 1 из 3)

Министерство образования и науки Украины

Харьковский государственый технический университет радиоэлектроники

Кафедра ПЭЭА

КУРСОВОЙ ПРОЕКТ

по предмету: Элементная база ЭА

на тему: Резистор переменного сопротивления типа А

Разработал

Руководитель проекта

2009

Содержание

Введение

1. Анализ ТЗ

2. Обзор аналогичных конструкций и выбор направления проектирования

3. Электрический и конструктивный расчет

3.1 Расчет резистивного элемента

3.2 Расчет контактной пружины

3.3 Теплотехнический расчет

3.4 Расчет частотных характеристик

4. Эскизная проработка элемента и обоснование принятых решений

5. Уточнение и описание конструкции

Выводы

Перечень ссылок

Задание на курсовой проект (работу) студента

1. Тема проекта (работы): Резистор переменного сопротивления с круговым вращением подвижной системы.

2. Срок сдачи законченного проекта (работы): 24.04.2001

3. Исходные данные к проекту (работе):

Rmin <10 Ом; Rmax =1кОм; PR =5Вт; ΔRmax =5%; δR<2%;

ТКR<50*10-6 1 /град;

диаметр оси управления 4мм; max диаметр резистора 25мм; ресурс работы-105 передвижений.

Условия эксплуатации:

климатические УХЛ 2.1 ГОСТ 15150 - 69;

выпуск n=100 000 шт. /год.

Введение

За, последние годы широкое применение получила радиоэлектронная техника, характер и функции которой требуют применения десятков и сотен тысяч различных комплектующих изделий. Среди них резисторы составляют значительную часть.

Они выполняют ответственную функцию - перераспределение электрической энергии между другими элементами схем - и составляют до 50% общего числа элементов радиоэлектронной аппаратуры.

Проволочные резисторы находят широкое применение, так как они имеют следующие достоинства:

Возможность изготовления резисторов с точной величиной номинального сопротивления;

Высокую стабильность сопротивления при воздействии различных внешних факторов;

Малую величину температурного коэффициента сопротивления;

Большую допустимую мощность рассеяния;

Устойчивость к электрическим перегрузкам;

Незначительный уровень собственных шумов;

Высокую радиационную стойкость;

Высокую износоустойчивость и др.

Благодаря этим достоинствам проволочные резисторы успешно используются в таких радиоэлектронных устройствах, к которым предъявляются повышенные требования точности и стабильности электрических и эксплуатационных параметров.

Резисторы используются в электронной аппаратуре, различных системах автоматического управления и регулирования, в электрооборудовании транспорта и измерительной технике. При помощи потенциометров можно не только преобразовать механическую величину в электрическую, но и реализовать требуемую функциональную зависимость между этими величинами.

В этом курсовом проекте также решается задача конструирования переменного проволочного резистора, предназначенного для электрического моделирования физических процессов. Вся трудность заключается в том, что при не большом сопротивлении и рассеиваемой мощности он имеет большую разрешающую способность, что позволяет отнести его к потенциометрам.

То есть данный курсовой проект является вкладом в процесс развития проволочных переменных резисторов.

1. Анализ ТЗ

Согласно технического задания необходимо спроектировать резистор переменного сопротивления с такими характеристиками:

номинальное сопротивление R=10 Ом;

номинальная мощность P=5 Вт;

разрешающая способность d<2%;

температурный коэффициент сопротивления

ТКС=± (5¸30) ×10-6 1/град;

термо е. д. с. Тэдс =-2 мкВ/град;

момент вращения m=0,1 Н/м;

ресурс роботы 105 вращений;

выпуск n=105 шт/год;

условия эксплуатации:

климатические - УХЛ 4.2 ГОСТ 15150-69;

механические - IV ст. ж. ГОСТ 16962-72.

Будущий резистор должен быть согласно ГОСТ 15150-69 по климатическому исполнению эксплуатироваться в микроклиматических районах с умеренным и холодным климатом в лабораторных, капитальных жилых и других подобных помещениях. Исходя из данных, для обеспечения ТКС и Тэдс в качестве материала для резистивного элемента по [1.39] выбираем манганин - медно-марганцевый сплав, который состоит из 83¸86,5% меди, 11¸13,5% марганца и 2,5¸3,5% никеля. В манганине

r=0,42¸0,48 Ом×мм2 /м, ТКС=± (0,5¸30) ×10-5 1/град, Терс =1 мкВ/град.


Намотку резистивного элемента произведём манганиновым проводом марки ПМТ - твёрдый, с изоляцией в один слой с высокотвердой эмали и диаметром жилы от 0,02 до 0,8 мм.

Так как резистор должен иметь ресурс работы 105 вращений, то необходимо обеспечить хороший контакт пружины токосъема к резистивной проволоке при минимальном контактном усилии и надёжную фиксацию установленного сопротивления.

Для резистивного каркаса нужно выбирать плоский каркас, так как он имеет меньший объем чем цилиндрический.

Номинальная мощность будущего резистора равна 2 Вт, что относит его классу резисторов средней мощности, поэтому у него будет отсутствовать большой перегрев.

Производство резисторов - серийное. По этому нужно обеспечить простоту изготовления и использовать для него недорогие материалы.

2. Обзор аналогичных конструкций и выбор направления проектирования

Конструкция заданного проволочного переменного резистора в большей мере зависит от заданных характеристик. Следовательно, после анализа технического задания стало известно, что конструируемый резистор должен иметь плоский резистивный элемент с постоянным сечением в виде прямоугольника.

Так как резистор имеет большое сопротивление, а соответственно большие размеры резистивного элемента, то для уменьшения габаритных размеров следует сделать резистивный элемент подковообразной формы.

Аналогичными конструкциями для данного резистора являются конструкции проволочных резисторов с круговым перемещением подвижного контакта СП5-2, СП5-3, СП5-2Т и СП5-3Т. Эти резисторы, для приведения в движение скользящего контакта, используют червячную передачу, что нежелательно использовать в данном резисторе. Так как эта конструкция из-за своих малых размеров может выйти из строя раньше времени (за счет износа вала), не обеспечивает плавного изменения сопротивления и для создания определенного контактного усилия и фиксации установленного сопротивления требует дополнительных затрат.

Более подходящую конструкцию имеет малогабаритный построечный резистор СП15-16Б, в котором прижим контактной системы к токосъему осуществляется за счет пружины. Контактная пружина имеет вид консольной балки, что позволяет выбрать значения контактного усилия в довольно широких пределах. Но отрицательной стороной этих резисторов является их герметичность, что не позволяет делать разборку резистора. Общим неподходящим элементом этих конструкций для разрабатываемого резистора является то, что у них резистивный элемент является струнным и контактная пружина находится между держателем и резистивным элементом. Пружина, прижимающая контактную систему к токосъему, находится в середине корпуса, создавая усилия за счет своей упругости и жесткости материала корпуса.

Учитывая эти недостатки в существующих резисторах, относительно проектируемого выбираем следующие направления:

Вращение скользящего контакта производить с помощью пружин;

Фиксация установленного сопротивления с помощью пружин;

Создание контактного усилия с помощью пластинчатых пружин и стопорных шайб для возможности его регулировки;

Токосъем выполним в виде консольной пружины круглого сечения, а соединение контакта и вывода произведём в виде спирали;

Корпус резистора - открытый, то есть крышки не имеет, так как условия работы - лаборатории, жилые дома и другие подобные помещения.

3. Электрический и конструктивный расчет

3.1 Расчет резистивного элемента

Определение площади плоского каркаса резистивного элемента производится согласно формулы [1.73]:

, (3.1)

где S - площадь каркаса, мм2, P -электрическая мощность рассеяния, Вт;

J-перегрев обмотки, равный разности между максимально допустимой температурой на обмотке и номинальной температуры окружающей среды, ˚C;

μ -средний коэффициент теплоотдачи резисторов, что лежит в пределах (5÷20) ·10-5 Вт/мм2 ·град [1.73];

Определение диаметра проволоки:

(3.2)

где d -диаметр проволоки, мм;

ρ -удельное электрическое сопротивление, Ом·мм2 /м, для манганина составляет 0,46 Ом·мм2 /м [1.39];

R -сопротивление обмотки, Ом;

к -коэффициент, числено равный отношению шага намотки к диаметру проволоки. Для резистивных элементов, с изолированной проволокой к = 1,05÷1,2 [1.73];

Определение длины проволоки L, мм:

, (3.3)

.

Определение шага намотки проволоки tн , мм:

(3.4)

.

Определение длины каркаса:

Площадь плоского каркаса определяется по формуле:

, (3.5)


Copyright © MirZnanii.com 2015-2018. All rigths reserved.