регистрация /  вход

Резисторы (стр. 2 из 6)

Количество и размеры изолированных областей оказывают существенное влияние на характеристики ИМС, поэтому:

1. Суммарная площадь изолирующих p-n-переходов должна

быть минимальной, так как их емкость является паразитной. Минимальные размеры изолированной области определяются геометрическими размерами находящихся в ней элементов и зазорами, которые необходимо выдерживать между краем изолированной области и элементами и между самими элементами, размещенными в одной изолированной области;

2. К изолирующим р-n-переходам всегда должно быть приложено напряжение обратного смещения, что практически осуществляется подсоединением подложки р-типа, или области разделительной диффузии р-типа, к точке схемы с наиболее отрицательным потенциалом. При этом суммарное обратное напряжение, приложенное к изолирующему переходу не должно превышать напряжения пробоя;

3. Диффузионные резисторы, формируемые на основе базового слоя, можно располагать в одной изолированной области, которая подключается к точке схемы с наибольшим положительным потенциалом. Обычно такой точкой является контактная площадка ИМС, на которую подается напряжение смещения от коллекторного источника питания;

4. Резисторы на основе эмиттерного и коллекторного слоев следует располагать в отдельных изолированных областях;

5. Транзисторы типа n-p-n, коллекторы которых подсоединены непосредственно к источнику питания, целесообразно размещать в одной изолированной области вместе с резисторами;

6. Транзисторы типа n-p-n, которые включены по схеме с общим коллектором, можно располагать в одной изолированной области;

7. Все другие транзисторы, кроме упомянутых в п. 5 и 6 необходимо располагать в отдельных изолированных областях, т.е. все

коллекторные области, имеющие различные потенциалы, должны быть изолированы;

8. Для уменьшения паразитной ёмкости между контактными площадками и подложкой, а также для защиты от короткого замыкания в случае нарушения целостности пленки окисла под ними при приварке проволочных выводов под каждой контактной площадкой создают изолированную область, за исключением контактных площадок с наиболее отрицательных потенциалом;

9. Количество изолированных областей для диодов может сильно изменяться в зависимости от типа диодов и способов их включения. Если в качестве диодов используются переходы база-коллектор, то для каждого диода требуется изолированная область, так как каждый катод (коллекторная область n-типа) должен иметь отдельный вывод;

10. Для диффузионных конденсаторов требуются отдельные изолированные области. Исключение составляют случаи, когда один из выводов конденсатора является общим с другой изолированной областью;

11. Для диффузионных перемычек всегда требуются отдельные и изолированные области.


2. Обзор литературы по теме курсового проекта.

2.1. Классификация интегральных микросхем и их сравнение.

В процессе развития микроэлектроники (МЭ), начиная с 1960 г., номенклатура ИС непрерывно изменялась. При этом отдельные типы ИС нередко рассматривались как альтернативные, т. е. исключающие все другие. В настоящее время каждый из основных типов ИС занял свое, относительное стабильное место в микроэлектронике. Выше, иллюстрируя общую идею интеграции, мы имели в виду главный тип ИС – полупроводниковые.

Классификация ИС. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и плёночных.

Рис.3. Структура элементов полупроводниковой ИС.

Полупроводниковая ИС – это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки (рис.3). Эти ИС составляют основу современной микроэлектроники.

Рис.4. Структура элементов пленочной ИС: 1– верхняя обкладка; 2– нижняя обкладка; 3– диэлектрик; 4– соединительная металлическая полоска.

Пленочная ИС — это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки (рис.4). В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИC (толщина пленок до 1 – 2 мкм) и толстопленочные ИС (толщина пленок от 10 – 20 мкм и выше).

Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные элементы типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т. п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными дискретными компонентами, располагая их на той же подложке и соединяя с пленочными элементами (рис.5). Тогда получается смешанная – пленочно-дискретная ИС, которую называют гибридной.

Гибридная ИС (или ГИС) – это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и дискретных активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называют навесными, подчеркивая этим их обособленность от основного технологи­ческого цикла получения пленочной части схемы. Помимо диодов и транзисторов, навесными компонентами могут быть и полупроводниковые ИС, т. е. компоненты повышенной функциональной сложности.

Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

Рис.5. Структура гибридной ИС: 1– резистор; 2– полоска металлизации; 3– навесной бескорпусный транзистор.

Совмещенная ИС – это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового, кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

Совмещенные ИС выгодны тогда, когда необходимы высокие но­миналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах, контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений – металлической разводкой.

Толстопленочные ГИС (обозначим их ТсГИС) изготавливаются весьма просто, на первый взгляд – примитивно. На диэлектрическую пластинку-подложку довольно большой пло­щади (несколько квадратных сантиметров) наносят пасты разного состава. Характерная особенность этого метода состоит в том, что пленка сразу приобретает заданную толщину. Проводящие пасты обеспечивают межсоединения элементов, обкладки конденсаторов и выводы к штырькам корпуса; резистивные – получение резисторов; диэлектрические – изоляцию между обкладками конденсаторов и общую защиту поверхности готовой ГИС. Каждый слой должен иметь свою конфигурацию, свой рисунок. Поэтому при изготовлении каждого слоя пасту наносят через свою маску – трафарет – с отверстиями (окнами) в тех местах, куда должна попасть паста данного слоя (рис, 6). После того как пленочная часть ТсГИС закончена, на заранее отведенные «пустые» места или на защитный диэлектрический слой приклеивают навесные компоненты и соединяют их выводы с контактными площадками, предусмотренными в проводящих слоях.

Из приведенного краткого описания следуют главные особенности ТсГИС:

— «механический» способ нанесения паст не позволяет делать толщину пленок менее 10 – 20 мкм (типичные значения 50 – 100 мкм), отсюда – названия толстопленочная технология и толстопленочные ГИС;

— простота технологии обеспечивает ее доступность и низкую стоимость изделий;

— «механический» способ нанесения пленок не может обеспечить достаточно малых допусков на номиналы резисторов и конденсато­ров, т. е. прецизионность элементов.

Рис.6. Накладная маска – трафарет для локального нанесения пасты.

Тонкопленочные ГИС (обозначим их ТкГИС) изготавливаются по более сложной технологии, чем ТсГИС, причем используется специфическое оборудование, обычно весьма дорогое. Поэтому стоимость ТкГИС выше, чем ТсГИС.

Классическая тонкопленочная технология характерна тем, что пленки осаждаются на подложку из газовой фазы. При этом пленки приобретают свою конечную толщину не сразу (как после нанесения пасты в ТсГИС), а постепенно – один мономолекулярный слой за другим. Вырастив очередную пленку, меняют химический состав газа и тем самым электрофизические свойства следующей пленки. Таким образом, поочередно получают проводящие, резистивные и диэлектрические слои. Конфигурация (рисунок) каждого слоя определяется либо трафаретом, наложенным на подложку (как в случае ТсГИС), либо маской, выращенной на поверхности подобно окисной маске в полупроводниковых ИС.

Для того чтобы атомы или молекулы пара беспрепятственно проходили от источника до подложки, необходимо создать достаточное разрежение атмосферы, т.е. проводить осаждение (нанесение) пленок в замкнутом пространстве (под колпаком), в котором создан вакуум той или иной степени.

Навесные элементы в ТкГИС, как и в ТсГИС, приклеивают на поверхность готовой пленочной части схемы и соединяют с соответствующими контактными площадками элементов.

2.2. Краткая характеристика полупроводниковых микросхем.

В настоящее время различаю два класса полупроводниковых ИС: биполярные ИС и МДП ИС. Сочетание биполярных и МДП – транзисторов на одном кристалле является особым случаем.

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта - спам опубликован не будет

Ваше имя:

Комментарий

Хотите опубликовать свою статью или создать цикл из статей и лекций?
Это очень просто – нужна только регистрация на сайте.

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!