Смекни!
smekni.com

Структура твердотельных интегральных микросхем (стр. 2 из 3)


Рис. 5. Формирование окисной маски:

а — окисление поверхности пластины;

б — нанесение фотослоя (1 — «прокол» в фотослое);

в — экспонирование через фотошаблон (2 — непрозрачный дефект на фотошаблоне);

г — проявление и образование фотомаски (3 — «проколы» в фотомаске);

д — травление окисла и снятие фотомаски (4 — «проколы» в окисной маске)

Качество защиты пластины окисной пленкой, с помощью которой избирательно вводят примеси для получения р- и n-областей (рис. 5), зависит от ее однородности, сплошности. При наличии в слое окисной маски микроотверстий («проколов») примесь проникает через них, образуя в полупроводнике незапланированные легированные микро-области, которые (в зависимости от их расположения) могут вывести соответствующий элемент из строя.

Причинами образования «проколов» могут явиться неоднородности в светочувствительном слое (частицы пыли, пузырьки и т. п.), а также дефекты в рисунке фотошаблона («проколы» на непрозрачных участках рисунка или светонепроницаемые точечные дефекты на прозрачных участках). Элемент (а следовательно, и вся схема) выходит из строя при попадании дефекта в некоторую критическую зону. Например, в процессе эмиттерной диффузии примесей через проколы в окисной маске могут образоваться высоколегированные микрообласти n+-типа. Такие области, если они приходятся на граничную зону коллекторных и базовых областей, приводят к возникновению токов утечки через переход и пробою перехода (дефекты 2, см. рис. 2). Проколы в окисной маске, образующиеся при вытравливании в окисном слое окон под металлические контакты, приводят на этапе металлизации пластины к образованию паразитных контактов (дефекты 1, см. рис. 2) и к коротким замыканиям областей эмиттер — база, база — коллектор, резистор—изолирующая область и т. д.

Таким образом, для конкретной ИМС на каждом этапе обработки можно говорить о некоторой критической площади, обусловливающей вероятность выхода из строя интегральной микросхемы. Если обозначить Sкр критическую площадь кристалла ИМС, просуммированную по всем циклам фотолитографической обработки, d — среднее число проколов на единицу площади, а распределение числа проколов, приходящихся на кристалл ИМС, принять пуассоновским, то вероятность получения годного кристалла ИМС после всех операций обработки:


(1)

Из соотношения (1) прежде всего следует, что повышение степени интеграции уменьшает вероятность выхода годных ИМС, если площади элементов и качество процесса фотолитографии остаются на неизменном уровне. Таким образом, повышение степени интеграции ИМС должно сопровождаться уменьшением площади элементов и совершенствованием процесса формирования защитных фотомасок. Высокое качество фотомаски предполагает прежде всего отсутствие в фотослое пылевидных частиц, газовых (воздушных) включений, остатков растворителя, а также высокое качество фотошаблонов (низкую плотность дефектов). В свою очередь, при изготовлении фотошаблонов также используются фотомаски, к которым предъявляются еще более жесткие требования.

Для повышения качества фотолитографических процессов в производственных помещениях создают обеспыленную атмосферу, а для производственного персонала устанавливают определенные правила производственной гигиены.

С другой стороны, из выражения (1) видно, что повышение степени интеграции при неизменном качестве технологического процесса возможно за счет уменьшения площади, занимаемой элементами ИМС, и, следовательно, площади критических зон. К этому же результату приводит и сокращение числа циклов фотолитографии. Этот второй путь реализуется разработкой новых типов структур либо с уменьшенной площадью, либо таких, для производства которых требуется меньшее число фотолитографических циклов обработки (либо то и другое одновременно).

На рис. 6 представлены структуры ИМС (на примере инвертора). Сокращение площади структуры S в случае КМДП достигнуто заменой коллекторного резистора дополняющим (нагрузочным) МДП-транзистором, а в случае И²Л — многоколлекторным биполярным транзистором, причем благодаря применению n-р-n- и р-n-р-транзисторов достигается совмещение отдельных областей переключательного транзистора и транзистора-инжектора. Во всех трех случаях сохраняется свойство универсальности структур: каждая из них пригодна для построения широкого класса функциональных электронных устройств.

Рис. 6. Реализация инвертора с помощью различных структур:

а — эпитаксиально-планарной с питанием через резистор;

б — КМДП-структуры; в — с инжекционным питанием (И²Л)

Для создания устройств более узкого функционального класса могут быть использованы специальные структуры, позволяющие достичь высокой степени интеграции ИМС. Примером могут служить структуры на приборах с зарядовой связью (ПЗС), на которых могут быть построены сдвиговые регистры, запоминающие устройства и некоторые логические элементы.


3. Причины ограничивающие минимальные размеры интегральных микросхем

Для выбранной структуры ИМС минимальные размеры элементов ИМС в целом зависят от возможностей фотолитографического процесса, которые характеризуются тремя основными параметрами: 1) минимальным размером элемента, надежно воспроизводимым на полупроводниковой пластине, которым оценивается разрешающая способность процесса; 2) предельными отклонениями размеров элементов рисунка одного топологического слоя от номинальных; 3) предельным смещением рисунка одного топологического слоя относительно предыдущего (например, базового слоя относительно коллекторного, эмиттерного относительно базового и т. д.). Все эти параметры имеют характер технологических ограничений и учитываются при определении размеров областей в плане, т. е. при топологическом расчете. Основной тенденцией развития литографических процессов является повышение разрешающей способности этапа экспонирования рисунка.

Важнейшей причиной, ограничивающей минимальные размеры элементов при экспонировании через фотошаблон, является дифракция света. Поэтому стремятся использовать излучения с более короткими, чем световые, длинами волн (электронные, рентгеновские). В связи с этим все большее развитие получают электроно- и рентгенолитография.

Для реализации высоких потенциальных возможностей, заложенных в электроно и рентгенолитографии, "необходимы и более совершенные методы. травления, с тем чтобы уменьшить разброс в размерах элементов на полупроводниковой пластине. Применение химических растворов для избирательного травления, например окиси кремния, становится неприемлемым из-за бокового подтравливания, размеры которого нестабильны по площади пластины. Здесь перспективным является распыление ионной бомбардировкой при наличии защитной маски (вакуум-плазменное травление).

Наконец, для уменьшения погрешности совмещения топологических слоев ИМС требуются методы и средства совмещения шаблонов с подложкой, обладающие повышенной точностью, а также специальные приемы структурно-топологического проектирования, позволяющие достичь эффекта самосовмещения. Технологически самосовмещение достигается за счет естественных физико-химических механизмов, для чего необходимо расширять круг технологических методов обработки (осаждение из газовой фазы, электролитическое окисление и наращивание, ионное легирование и т. п.).

Повышение качества маскирующих пленок, разработка структур малой площади, совершенствование процессов литографии — все это прямой, естественный путь повышения степени интеграции ИМС. Он отражает непрерывный эволюционный процесс совершенствования производства ИМС, постепенного накопления условий и возможностей для повышения степени интеграции.


4. Микросборка оптоэлектронные ИМС

Требования разработки сложных функциональных устройств в миниатюрном исполнении опережают возможности интегральной технологии и заставляют прибегать к компромиссным конструктивно технологическим решениям. Одно из таких решений — объединение ряда кристаллов ИМС средней степени интеграции с помощью пленочных межсоединений на общей диэлектрической подложке и в общем корпусе [создание так называемой микросборки (рис. 7)].

Рис. 7. Микросборка цифрового устройства:

а — общий вид (со снятой крышкой);

б — кристалл ИМС и участок межсоединений.

В общем случае микросборка представляет собой изделие типа большой гибридной интегральной микросхемы, включающее элементы, компоненты и (или) интегральные микросхемы (корпусные и безкорпусные). Микросборки позволяют в малых размерах реализовать устройства со сложными функциями. Их разрабатывают и изготовляют применительно к конкретной радиоэлектронной аппаратуре с целью улучшения показателей ее миниатюризации. Типовой элемент замены (ТЭЗ) современных ЭВМ обычно выполняют на основе многослойной печатной платы (МПП) и набора ИМС в индивидуальных корпусах. Освобождая кристаллы ИМС от корпусов и заменяя печатный монтаж пленочными микросоединениями, получают микросборку, выполняющую функции ТЭЗ, но обладающую малыми размерами и массой. Этот пример иллюстрирует общую тенденцию в развитии конструкций ЭВА, сопровождающую процесс повышения степени интеграции ИМС (передачу ей функций ТЭЗ, передачу ТЭЗ функций панели или блока и т. д., в том числе замену печатными платами трудоемкого .проводного монтажа) и состоящую в проникновении ИМС на все более высокие уровни функциональной иерархии ЭВА. Это объективно приводит к повышению технологичности конструкций ЭВА.