Смекни!
smekni.com

Тепловые и механические характеристики электронных средств (стр. 2 из 3)

Р = б*J,

Величины, обратные проводимостям, называются тепловыми сопротивлениями.

Тепловой расчет блока МЭА заключается в определении температуры ti какой-либо i -ой части конструкции (корпуса, ячейки, микросхемы, р-п перехода транзистора, диода и т. п.) в зависимости от заданной мощности источников тепла внутри блока Р, времени τ и известной температуры окружающей среды tС. В общем случае необходимо определить

ti - tc = ƒ1(P, τ).

Эта зависимость называется тепловой характеристикой элемента конструкции. Поскольку наиболее жестким является установившийся (стационарный) тепловой режим блока, когда местные перегревы достигают максимальных значений, и поскольку в блоке возможно применение принудительных систем охлаждения, отводящих мощность Q, то тепловая характеристика преобразуется к виду:

ti - tc= ƒ2(P, Q).


При этом считается, что габариты и объём блока V известны. Рассчитав тепловую характеристику конструкции при заданных V и tc и известных видах теплопередачи, можно варьируя объёмом получить их семейство и полученные зависимости перестроить в зависимости вида (Р, Q) = ƒ3 (V), имеющие практический интерес при конструировании. На рис.1 приведены ориентировочные зависимости допустимой мощности рассеивания блока МЭА при tс=20…60 0С и перегреве корпуса относительно среды 20 0С от объёма корпуса и условий теплопередачи. Корпус блока принят металлическим из алюминиевых сплавов без оребрения. Кривая 1 соответствует случаю излучения и естественной конвекции, кривая 2- излучению и принудительной конвекции воздуха вокруг корпуса (В=0,1м/с), кривая 3- только излучения.

Рис.1. Зависимость допустимой мощности рассеивания блока МЭА от объёма корпуса и условий теплопередачи.

Расчет с помощью тепловых характеристик состоит в том, что вначале задаются перегревом рассматриваемой поверхности на 10-15 0С выше температуры окружающей среды и определяют возможный тепловой поток, который способна она передать в среду при заданных габаритах и формах. При этом определяется одна точка тепловой характеристики. Далее принимают перегрев поверхности, равным еще на 10-15 0С выше первого, и аналогично определяют вторую точку графика. Третьей точкой является начало координат. Используя свойство линейности тепловых характеристик, по трём точкам её строят полностью.

При расчёте тепловых режимов МЭА можно ограничиться двумя вариантами. Первый вариант расчёта, характерный для металлических ячеек, основан на использовании в тепловой модели конструкции способа расчёта температур изотермических поверхностей. Он включает следующие основные этапы:

-расчет среднеповерхностной температуры корпуса,

-составление тепловой схемы блока,

-определение тепловых проводимостей отдельных участков между изотермами,

-определение температур изотермических поверхностей внутри блока и сравнение их с максимально допустимыми.

При этом методе расчёта тепловая схема блока включает тепловые проводимости, обусловленные конвекцией, излучением и теплопроводностью, а сам расчёт проводится согласно законам Ома, Кирхгофа по методу тепловых характеристик.

Второй вариант расчёта, характерный для неметаллических ячеек на печатных платах, основан на использовании метода однородного тела, который подразумевает представление системы тел, включающей несколько неоднородных тел, в виде монолитного теплового тела с постоянными теплофизическими параметрами. Основными этапами расчёта являются:

- определение среднеповерхностной температуры корпуса блока и среднеповерхностной температуры нагретой зоны,

выделение в координатных осях x, y, z элементарной типовой ячейки и составление для неё тепловой схемы в эквивалентных теплопроводностях по тем же осям,

выражение геометрических параметров нагретой зоны по осям x, y, z,

определение температуры i-ого элемента в нагретой зоне и сравнение полученных данных с предельно допустимыми.

Особенностью данного способа является представление пакета ячеек в виде монолитного (без воздушных зазоров) однородного анизотропного тела с различными теплопроводностями по координатным осям. Сам расчет в данном случае прводится путём решения дифференциальных уравнений теплопроводности по закону Фурье.

3. Механические воздействия на МЭА

МЭА должна быть механически прочной и устойчивой. При обеспечении механической прочности необходимо, чтобы механические воздействия не оставляли необратимых изменений. При выполнении требования механической устойчивости необходимо, чтобы механические воздействия не оказывали влияния на электрические характеристики аппаратуры.

В процессе эксплуатации ЭС в микроэлектронном исполнении, хотя и в меньшей степени, но всё же испытывает вибрационные и ударные механические нагрузки.

Параметрами вибрации являются амплитуда (А, мм), частота (f, Гц), ускорение, выражаемое в единицах ускорения свободного падения (g). Ударное воздействие чаще всего характеризуется величиной ускорения. Ударные нагрузки менее опасны (при равных g), чем вибрации. Например, для МЭА летательных аппаратов характерны следующие параметры механических воздействий, представленные в таблице 1.

Влияние вибраций сводится к тому, что при совпадении частоты возмущений силы и частоты собственного резонанса конструкции МЭА возникает явление механического резонанса, при котором усилия возрастают настолько, что могут привести к механическим разрушениям изделия.

Удары и ускорения наиболее опасны для хрупких напряжённых деталей особенно из керамики, стекла и ферритов. При ударах возможно разрушение деталей и узлов в местах крепления.

Основной мерой защиты конструкции МЭА от вибрации, ударов и ускорений является применение амортизаторов – демпферов.

На основании вышеизложенного для обеспечения надёжной работы МЭА необходимо проведение соответствующих инженерных расчётов по определению тепловых режимов и ожидаемых механических нагрузок, исходя из условий установки МЭА на объекты и условий эксплуатации. На основании этих расчётов принимаются специальные меры по обеспечению теплоотвода и применению амортизаторов и демпферов. Воздействие ожидаемых уровней радиации устраняется соответствующей защитой конструкции аппарата.

4 Защита блоков МЭА от механических воздействий

При эксплуатации и транспортировке на МЭА, действуют вибрации, удары и линейные ускорения. Так, например, вибрации характеризуется перегрузками, достигающими 30g в диапазоне частот от 30 до 5000 Гц, а линейные ускорения и удары – перегрузками до 50g. Действие этих факторов может привести к поломке выводов, подложек микросхем, возникновению в них усталостных напряжений, разрушению контактов и герметизации блоков.

Особенностью МЭА по сравнению с обычной РЭА является её повышенная виброустойчивость, вибро- и ударопрочность. Объясняется это следующим. Во-первых, поскольку частоты собственных колебаний радиоэлектронного аппарата, определяемые выражением ƒ0i = 1/2π*√ki /mi, где ki, mi - соответственно жёсткость крепления и массы i-ых элементов конструкции, при заметном уменьшении масс и увеличении жёсткости крепления элементов МЭА значительно возрастает, то это приводит к уменьшению числа опасных низкочастотных резонансов. Опасность низкочастотного резонанса в РЭА проявляется в резком увеличении амплитуды колебаний тел при вынужденной вибрации, определяемой выражением А= 250n /ƒ2, мм, где n - величина перегрузки, ƒ – частота вибрации, Гц. Во-вторых, для МЭА и её элементов при линейных ускорениях и ударах, значительно уменьшаются разрушающие силы Fi= n*mi*g, поскольку массы элементов конструкции опять-таки имеют малые величины.

Степень защиты МЭА от механических воздействий во многом зависит от прочности ГИС и методов их крепления в металлических рамках ячеек.

Прочность ГИС от воздействия ударов и вибраций, в основном определяется прочностью выводов навесных активных бескорпусных элементов и перемычек. На подложке типовой ГИС устанавливается обычно несколько десятков бескорпусных полупроводниковых приборов и перемычек. Каждый полупроводниковый прибор имеет по несколько выводов. Вибропрочность выводов определяется их длиной и консольностью. Допустимыми считается размеры перемычек и выводов по длине L ≤ 100d и консольности c ≤ 10d, где d- диаметр проводника, обычно равный 0,05 мм. Выводы и перемычки не должны иметь перегибов, а разварка их на подложке должна осуществляться без натяга. При этом допускаемые нормальные напряжения усилий на разрыв не должны превышать при вибрациях 2кг/мм2, при линейных ускорениях 4,3 кг/мм2 и ударах 7,2 кг/мм2.

Установлено, что ГИС, обладающие запасом вибропрочности, заведомо прочны к воздействиям ударов и линейных ускорений. При вибрациях на низких частотах наиболее опасны для ГИС амплитуды изгибных колебаний, приводящие к отрыву выводов, а на верхних частотах - виброскорости колебаний, создающие усталостные напряжения в элементах ГИС. Приняты следующие ограничения по амплитуде изгибных колебаний подложек ГИС и допустимые виброскорости соответственно А ≤ 0,3 мм и J ≤ 800 мм/с.

Расчет виброчности ячейки, как несущей конструкции ГИС, сводится к определению собственной частоты ячейки, сравнению её со значениями частот, определяемых из условий допустимой амплитуды и виброскорости в заданном в диапазоне частот внешних вибраций к выбору того или иного типа крепления ГИС в ячейки по заданным величинам. Тип крепления ГИС в ячейки определяет её коэффициент динамичности β. Коэффициент динамичности показывает, в какое число раз конструкция ячейки усиливает внешние колебания. Чем меньше коэффициент динамичности, тем слабее нежелательные резонансные свойства ячейки.