регистрация / вход

Типовые динамические звенья и их характеристики

Понятие и свойства динамического звена, его значение в работе системы. Передаточная функция системы и ее основные звенья. Характеристики соединений звеньев и порядок построения их логарифмических частотных. Определение идеального дифференцирующего звена.

Типовые динамические звенья и их характеристики


Динамическим звеном называется элемент системы, обладающий определенными динамическими свойствами.

Любую систему можно представить в виде ограниченного набора типовых элементарных звеньев, которые могут быть любой природы, конструкции и назначения. Передаточную функцию любой системы можно представить в виде дробно-рациональной функции:

(1)

Таким образом, передаточную функцию любой системы можно представить как произведение простых множителей и простых дробей. Звенья, передаточные функции которых имеют вид простых множителей или простых дробей, называют типовыми или элементарными звеньями. Типовые звенья различаются по виду их передаточной функции, определяющей их статические и динамические свойства.

Как видно из разложения, можно выделить следующие звенья:

1. Усилительное (безынерционное).

2. Дифференцирующее.

3. Форсирующее звено 1-го порядка.

4. Форсирующее звено 2-го порядка.

5. Интегрирующее.

6. Апериодическое (инерционное).

7. Колебательное.

8. Запаздывающее.

При исследовании систем автоматического управления она представляется в виде совокупности элементов не по их функциональному назначению или физической природе, а по их динамическим свойствам. Для построения систем управления необходимо знание характеристик типовых звеньев. Основными характеристиками звеньев являются дифференциальное уравнение и передаточная функция.

Рассмотрим основные звенья и их характеристики.

Усилительное звено (безынерционное, пропорциональное). Усилительным называют звено, которое описывается уравнением:

(2)

или передаточной функцией:

(3)

При этом переходная функция усилительного звена (рис. 1а) и его фун-кция веса (рис. 1б) соответственно имеют вид:


а) б)

Рис. 1

Частотные характеристики звена (рис. 2) можно получить по его передаточной функции, при этом АФХ, АЧХ и ФЧХ определяются следующими соотношениями:


.


Рис. 2

Логарифмическая частотная характеристика усилительного звена (рис. 3) определяются соотношением .


Рис. 3

Примеры звена:

1. Усилители, например, постоянного тока (рис. 4а).

2. Потенциометр (рис. 4б).


а) б)

Рис. 4


3. Редуктор (рис. 5).

K(p)=i=wвых /wвх .


Рис. 5

Апериодическое (инерционное) звено . Апериодическим называют звено, которое описывается уравнением:

(4)

или передаточной функцией:

(5)

где Т – постоянная времени звена, которая характеризует его инерционность, k – коэффициент передачи.

При этом переходная функция апериодического звена (рис. 6а) и его функция веса (рис. 6б) соответственно имеют вид:


0 t

б)


Рис. 6

Частотные характеристики апериодического звена (рис. 7а-в) опреде-ляются соотношениями:


а) б) в)

Рис. 7

Логарифмические частотные характеристики звена (рис. 8) определяются по формуле


При


Рис. 8

Это асимптотические логарифмические характеристики, истинная характеристика совпадает с ней в области больших и малых частот, а максимальная погрешность будет в точке, соответствующей сопряженной частоте, и равна около 3 дБ. На практике обычно используют асимптотические характеристики. Их основное преимущество в том, что при изменении параметров системы (k и T ) характеристики перемещаются параллельно самим себе.

Примеры звена:

1. Апериодическое звено может быть реализовано на операционных усилителях (рис. 9).


ÆÆ

Рис. 9


2. Звенья на RLC-цепях (рис. 10).

L

R
Uвх
С
Uвх
ÆÆÆÆ
R
Uвых
Uвых

ÆÆÆÆ

Рис. 10

4. Механические демпферы (рис. 11).

Y

Рис. 11

Интегрирующее звено. Интегрирующим звеном называют звено, которое описывается уравнением:

(6)

или передаточной функцией:


(7)

При этом переходная функция интегрирующего звена (рис. 12а) и его функция веса (рис. 12б) соответственно имеют вид:


Рис. 12

Частотные характеристики интегрирующего звена (рис. 13) определяются соотношениями:


Рис. 13


Логарифмические частотные характеристики интегрирующего звена (рис. 14) определяются по формуле:


Рис. 14

Пример звена. Интегрирующее звено может быть реализовано на операционных усилителях (рис. 15).

K(p) = 1/Tp;

T = Rвх Cос .


ÆÆ

Рис. 15

Дифференцирующее звено. Дифференцирующим называют звено, которое описывается уравнением:

(8)


или передаточной функцией:

(9)

При этом переходная функция звена (рис. 16а) и его функция веса (рис. 16б) соответственно имеют вид:


Рис. 16

Частотные характеристики звена (рис. 17а-в) определяются соотношениями:


а) б) б)

Рис. 17


Идеальное дифференцирующее звено является физически не реализуемым. В реальных звеньях такой вид характеристики могут иметь только в ограниченном диапазоне частот.

Логарифмические частотные характеристики звена (рис. 18) определяются по формуле:


Рис. 18

Примеры звена:

1. Дифференцирующее звено может быть реализовано на операционных усилителях (рис. 19).


ÆÆ

Рис. 19

2. Тахогенератор (рис. 20).


Æ

y = U

Æ

Рис. 20

Колебательное звено. Колебательным называют звено, которое описывается уравнением:

(10)

или передаточной функцией:

(11)

где x – демпфирование (0 £x£ 1).

Если x = 0, то демпфирование отсутствует (консервативное звено – без потерь), если x = 1, то имеем два апериодических звена.

При этом переходная функция звена и его функция веса (рис. 21) соответственно имеют вид:

(12)



а) б)

Рис. 21

Амплитудно-фазовая частотная характеристика (АФХ) имеет вид (рис. 22а) и определяется соотношением

Амплитудно-частотные характеристики (АЧХ) для различных значений x имеет вид (рис. 22б) и определяется соотношением

Фазовая частотная характеристика (ФЧХ) имеет вид (рис. 22в) и определяется соотношением

Частотные характеристики колебательного звена имеют вид



а) б) в)

Рис. 22

Логарифмические частотные характеристики звена (рис. 23) определяются по формуле:

При k = 1


Рис. 23


Примеры звена. Колебательное звено может быть реализовано на операционных усилителях (рис. 24).


Рис. 24

Колебательное звено на RLC-цепи (рис. 25).

L
R

Рис. 25

В приведенной схеме:

С – накапливает энергию электрического поля;

L – накапливает энергию электромагнитного поля;

R – на сопротивлении происходит потеря энергии.

Запишем передаточную функцию цепи:


– затухание (демпфирование).

4. Механические демпферы (рис. 26).


Рис. 26

Форсирующее звено. Форсирующим называют звено, которое описывается уравнением:

(13)

или передаточной функцией

(14)

где k – коэффициент передачи звена.

При этом переходная функция звена и его функция веса соответственно определяются соотношениями:

Частотные характеристики звена (рис. 27а-в) определяются соотношениями:



1


а) б) в)

Рис. 27

Логарифмические частотные характеристики звена (рис. 28) определяются по формуле:


Рис. 28

Форсирующее звено 2-го порядка. Передаточная функция форсирующего звена 2-го порядка имеет вид:

(15)

Логарифмические частотные характеристики звена имеют вид:



Запаздывающее звено. Дифференциальное уравнение и передаточная функция запаздывающего звена имеют вид:

(16)

(17)

где t – время запаздывания.

В соответствии с теоремой запаздывания . При этом переходная функция звена и его функция веса (рис. 30а, б) соответственно определяются соотношениями:


Рис. 30


Частотные характеристики звена (рис. 31а-в) определяются соотношениями:


а) б) в)

Рис. 31

Устойчивые и неустойчивые звенья. В устойчивых звеньях переходный процесс является сходящимся, а в неустойчивых он расходится. Устойчивые звенья называются минимально – фазовыми. Эти звенья не содержат нулей и полюсов в правой полуплоскости корней. Неустойчивые звенья называются не минимально – фазовыми. Т. е. изменению амплитуды на ±20 дБ/дек соответствует изменение фазы на ±p/2, а ±40 дБ/дек – на ±p.

Пример 1. Построить частотные характеристики для звеньев

Для заданных передаточных функций звеньев, характеристики имеют вид (рис. 32):



Рис. 32

Идеальные и реальные звенья. Идеальные звенья физически не реализуемы, реальные звенья содержат инерционности.

реальное интегрирующее звено;

реальное дифференцирующее звено;

реальное форсирующее звено.

АФХ этих звеньев имеют вид (рис. 33а-в):


а) б) в)

+j
Рис. 33

Рассмотрим характеристики соединений звеньев и порядок построения логарифмических частотных характеристик соединений звеньев.

1. Определяем, из каких элементарных звеньев состоит соединение.

2. Определяем сопрягающие частоты отдельных звеньев и откладываем их по оси частот в порядке возрастания.

3. Определяем наклон низкочастотной асимптоты, используя формулу [(l-m) 20] дБ/дек (где l – количество дифференцирующих, а m- интегрирующих звеньев) и проводим ее через соответствующую сопряженную частоту.

4. Последовательно сопрягая звенья, строим характеристику соединения.

Пример 2. Построить логарифмическую частотную характеристику соединения:



Пример 3. Построить логарифмическую частотную характеристику соединения

L [дБ]
0,1 1 10 w[1/c]


Пример 4. Построить АФХ соединения звеньев, передаточная функция которого имеет вид

Решение: Выполнив подстановку p = j w и умножив на комплексно сопряженное выражение, получим

Строим характеристику рис. 36.

АФХ

+j

K(jw)

+


Рис. 36

Литература

1. Автоматизированное проектирование систем автоматического управления. / Под ред. В.В. Солодовникова. – М.: Машиностроение, 1990. -332 с.

2. Бойко Н.П., Стеклов В.К. Системы автоматического управления на базе микро-ЭВМ. – К.: Тэхника, 1989. –182 с.

3. В.А. Бесекерский, Е.П. Попов «Теория систем автоматического управления». Профессия, 2003 г. – 752 с.

4. Гринченко А.Г. Теория автоматического управления: Учебн. пособие. – Харьков: ХГПУ, 2000. –272 с.

5. Справочник по теории автоматического управления. /Под ред. А.А. Красовского – М.: Наука, 1987. – 712 с.

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

Комментариев на модерации: 1.

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]

Ваше имя:

Комментарий