Смекни!
smekni.com

Физические основы распространения излучения по оптическому волокну (стр. 2 из 5)

ММ означает MultiMode или многомодовое, диаметр сердечника такого волокна 62.5 микрона, а диаметр оболочки 125 микрон.

Одномодовое волокно

Для одномодового волокна диаметр сердечника составляет 8 микрон, что гораздо ближе к обычно используемой длине волны 1300 нм. Это позволяет передовать свет одной нулевой модой и полностью устранить эффект модовой дисперсии, о котором шла речь выше. Однако дисперсии присутствует, она носит название частотной и связана с тем, что свет с разной длиной волн (разного цвета) распространяется в волокне с различной скоростью. Таким образом, пропускная способность такого кабеля хотя и увеличивается, но остается ограниченной ~ 100ГГц и в достаточно сильной степени зависит от спектральной чистоты источника света. Хотя такое волокно и позволяет передовать данные на гораздо большие расстояния — десятки километров, одномодовые системы достаточно дороги, потому что в качестве источника света в них используют сравнительно дорогие лазеры с очень узким спектральным составом излучаемого света. Наиболее популярный тип одномодового волокна обычно обозначается как SM 8/125. SМ означает SingleMode или одномодовое, диаметр сердечника такого волокна 8 микрон, а диаметр оболочки 125 микрон.

Окна прозрачности

Окно прозрачности — это длина световой волны излучения, которую волокно передает с наименьшим затуханием. Длина волны измеряется обычно в нанометрах (нм). Самые распространенные значения длины волны — 850, 1300, 1310 и 1550 нм. Большинство волокон имеет два окна — т. е. оптическое излучение может передаваться на двух длинах волн. Для многомодовых оптических волокон это 850 и 1310 нм, а для одномодовых — 1310 и 1550 нм.

4. Физика светопередачи

В градиентном световоде рефракция приводит к самофокусировке отдельных лучей на осевой линии, при этом их траектории представляют собой синусоиды, а для немеридиональиых лучей - винтовые линии.

Удержание излучения внутри оптически более плотной центральной части световода обеспечивается не для всех лучей, а лишь для той их части, которые падают на торец не слишком косо (угол падения отсчитывается от нормали к плоскости торца). Для каждого световода имеется некоторый критический угол φ0 определяющий его угловую апертуру: лишь лучи с углами

распространяются по волокну. Величина
называется числовой апертурой и является важной характеристикой световода; именно этот параметр входит во многие расчетные формулы. Излучение, заключенное внутри конуса с углом при вершине
представляет собой направляемые или каналируемые лучи (моды). Если
то после многократного повторения акта отражения - преломления на границе сердцевина - оболочка вся энергия луча перейдет в оболочку и удержится в ней, если выполняется условие полного внутреннего отражения на внешней границе оболочки. Эта часть излучения представляет собой вытекающие или оболочечные лучи (моды). Если условие не выполняется, то лучи выходят и из оболочки - это излучаемые моды. При больших длинах распространения вытекающие лучи поглощаются в оболочке (менее прозрачной, чем сердечник) и в процессе светопередачи по волокну участвуют только внутриапертурные направляемые лучи.

Описанным механизмом светопередачи обусловлена и дисперсия волокна, заключающаяся в различии групповых скоростей составляющих оптического излучения. Этот эффект вызывается двумя причинами:

во-первых, лучи с разными углами падения проходят в световоде различные расстояния и,

во-вторых, свойства материала зависят от длины волны излучения, а любой реальный источник не строго монохроматичен.

Иными словами, дисперсия волокна, трактуемая более широко, чем это принято в традиционной оптике, зависит не только от степени когерентности излучения, но и от геометрических характеристик волокна.

Согласно сказанному выделяют три составляющие дисперсии:

межмодовую (или волноводную), обусловленную различием групповых скоростей различных мод [см. формулу (1.25)];

внутри-модовую, обусловленную нелинейной зависимостью постоянной распространения данной моды от длины волны; материальную- (дисперсию материала), выражающуюся в зависимости показателя преломления среды от длины волны.

Сушествование этих составляющих однозначно вытекает из анализа формул (1.16), (1.25) и (1.46). Отметим, что модовая дисперсия может иметь место и тогда, когда показатель преломления среды не зависит от λ, т. е. дисперсия материала D = 0.

Дисперсия подобно инерционным процессам в электрических цепях и электронных приборах проявляется в завале частотной характеристики световода (зависимость интенсивности излучения на выходе от частоты модуляции) и в искажении передаваемых импульсов света (расплывание, уширение). Любой из видов дисперсии тем существеннее, чем протяженнее световод (временное расхождение между двумя лучами «набегает» по мере их распространения); поэтому для характеристики инерционности используют временные параметры, приведенные к единице длины световода: полоса пропускания f0 МГц-км; постоянная дисперсии

нс/км; уширение импульса
нс/км. Величина f0 определяется по спаду частотной характеристики на 3 дб,
- по времени нарастания импульса в е раз,
- по расплыванию единичного
импульса на уровне половины его амплитуды. Между этими параметрами имеется простая взаимосвязь:

Для оценки инерционности световода длиной L величины

умножаются, а f0 делится на L

Качественное сравнение двух типов волокон приводит к заключению, что градиентные световоды должны иметь лучшие-дисперсионные свойства. В них луч света, распространяющийся по искривленной траектории, значительную часть пути проходит в областях с уменьшенным значением n, т. е. с большей скоростью, чем, например, осевой луч. Поэтому при различии длин двух световых путей время их прохождения лучами может оказаться практически одинаковым. В световоде со ступенчатым изменением показателя преломления эффект выравнивания времени распространения не имеет места, так как скорость распространения света по всему сечению сердечника постоянна. По существу стремление ослабить дисперсионные эффекты и явилось основным стимулом развития градиентных световодов.

Основы теории.

Ряд полезных соотношений может быть получен с помощью математического аппарата лучевой теории, пренебрегающего конечностью длины волны света и нелинейными эффектами.

Если на торец ступенчатого волокна (рис. 9.1) из среды с показателем преломления n0 поступает поток излучения, то по закону отражения - преломления совместно для поверхностей торца и границы сердцевина - оболочка

где

— показатели преломления сердцевины и оболочки -световода. Это прямо следует из соотношений
и
Обычно излучение приходит из воздуха
тогда

где

и
- соответственно абсолютная и относительная разности показателей преломления сердцевины и оболочки. Изгиб световода приводит к тому, что угол между лучом и границей раздела сердечник — оболочка возрастает
и угловая апертура уменьшается. Используя ту же схему расчета и учитывая, что радиус изгиба
- диаметр сердцевины), получаем, что снижение числовой апертуры до 90% от своего, первоначального значения произойдет при

Окончательное выражение в (9.4) получено при

При типичных
мкм и
имеем