Смекни!
smekni.com

Элементы теории автоматического регулирования (стр. 2 из 3)

Для электронного усилителя, например, характеризующее его выражение имеет вид:

U=KUвх

где К - коэффициент усиления.

Данное уравнение характеризует усилитель как элемент АСР.

Выражение, характеризующее, например, электродвигатель в статике, имеет более сложный вид, но также является алгебраическим. Поведение системы в динамических режимах описывается только дифференциальными и интегральными уравнениями.

При составлении дифференциальных уравнений за начало отсчета берут не нуль, а равновесное рабочее состояние, т.е. ΔU, ΔI и т.д.

Основные этапы составления дифференциальных уравнений АСР следующие:

1. Вся система разделяется на отдельные элементы, причем за основу деления принимаются не технические (функциональные) признаки, а динамические свойства элементов.

2. Выявляются физические закономерности в каждом отдельном элементе, которые связывают в зависимость.

3. Через параметры элемента записывают уравнения этого элемента.

4. Из системы уравнений отдельных элементов получают дифференциальное уравнение АСР в целом.

Для решения дифференциальных уравнений в теории автоматического регулирования пользуются так называемым операторным методом или методом преобразования Лапласа. Основное достоинство данного метода состоит в том, что он позволяет сложные дифференциальные и интегральные соотношения представить в удобной для анализа алгебраической форме. Сущность метода состоит в следующем. Преобразование Лапласа преобразует функцию вещественного переменного (в том числе и времени) в функцию комплексного переменного. Такое преобразование и превращает дифференциальные уравнения в алгебраические.

Понятие комплексного числа и операции над ними известны из курса элементарной алгебры.

Понятия: функция, производная, интеграл комплексного переменного остаются без изменения также, однако меняются их содержание и соответственно действия над ними.

Закон, по которому функция вещественного переменного преобразуется в функцию комплексного переменного или в операторное изображение, есть преобразование Лапласа функции f(t) :

, (1)

где p = α + jω – произвольная комплексная величина; α и ω – вещественные переменные; f(t) - функция времени, например, изменение во времени напряжения, угла поворота и т.д. В дальнейшем будем называть функцию f(t) оригиналом, а соотношение (1) ее операторным изображением.

Преобразование (1), осуществляемое над функцией f(t), сокращенно обозначается так:

f(t)F(p) или F(p) =L [f(t)]. (2)

Эту запись нужно понимать так: от данной функции f(t) можно перейти к ее изображению F(p) и, наоборот, от изображения данной функции F(р) можно перейти к самой функции f(t).

Формула обратного преобразования:

, (3)

Чтобы понять суть применения операторного метода, можно провести некоторую аналогию между его применением и использованием логарифмов для выполнения сложных вычислений. Использование логарифмов позволяет заменить сложные операции возведения в степень и извлечения корня умножением и делением, а умножение и деление - сложением и вычитанием. По окончании вычислений осуществляется обратный переход от логарифмов к самим величинам.

Здесь также изменяющиеся во времени величины заменяются соответствующими операторными изображениями этих величин. С изображениями выполняются все операции, необходимые для математического исследования АСР. После окончания решения осуществляется обратный переход от изображений к вещественным величинам.

Основные соотношения операторного исчисления сведены в табл. .1. По ним осуществляют прямой и обратный переход.

Чтобы увидеть преимущество решений дифференциальных уравнений при помощи преобразования Лапласа, рассмотрим пример.

Пусть линейная АСР описывается дифференциальным уравнением 2-го порядка:

(4)

Применяем преобразование Лапласа

(5)

Воспользуемся приведенными выше правилами.

(6)

(7)

Таблица 1)

f(t) (оригинал)

F(p) (изображение)

f(t) (оригинал)

F(p) (изображение

а f(t)

а F(p)

pn F(p)

f1(t) ± f2(t)

F1(p)± F2(p)

рF(p)

n

Получим операторное изображение дифференциального уравнения при нулевых начальных условиях.

Передаточной функцией элемента или системы называется отношение изображения Лапласа (или операторного изображения) соответствующей выходной величины к изображению Лапласа входной величины. При этом считается, что элемент или система находились при нулевых начальных условиях.

Таким образом, передаточная функция определяется отношением

(8)

Учитывая (7), выражение для передаточной функции можно записать в виде

(9)

При р = 0, т.е. когда нет изменяющихся величин (установившееся состояние системы), передаточная функция вырождается в обычный коэффициент усиления системы. Так, у электронного усилителя передаточная функция К(р) = К.

В АСР степень полинома знаменателя D(p) всегда выше или, в крайнем случае, равна степени полинома числителя Е(р), т.е. всегда n > m.

Корни полинома числителя называют нулями, а знаменателя - полюсами.

Из соотношений (4) - (9) ясно, что передаточную функцию можно получить простой формальной заменой производных дифференциального уравнения символом р в соответствующей степени. Из передаточной функции можно определить выходную величину:

(10)

Включение отдельных звеньев АСР можно выполнять в трех основных формах: последовательное, параллельное и встречное включение (охват обратной связью).

Пусть АСР состоит из п последовательно включенных звеньев (рис.3), передаточные функции которых равны:

К1(р) ; К2(р) ; . . . ; Кn(р)

Пусть на вход первого звена подается величина хвх и с выхода этого звена снимается величина х1. Эта величина — соответственно входная величина второго звена. С выхода второго звена снимается величина х2, которая является входом третьего звена и т.д.

Запишем значение передаточных функций всех звеньев:

(11)

Передаточная функция всей системы может быть определена

(12)

или
(13)

Таким образом, передаточная функция системы, состоящей из последовательно включенных звеньев, равна произведению передаточных функций этих звеньев. Если АСР состоит из n параллельно и согласно включенных звеньев (рис. 4), их передаточные функции равны: К1 (р), К2(р),...,Кn (р).

Пусть на вход цепи подается величина хвх. На вход каждого звена соответственно подаются величины: x1вх, х2вх, …., х n вх. Выходные величины обозначим через xlвых, х2 вых , х3 вых,...., х n вых, а суммарную величину через х вых:

Хвых= Х1 вых2 вых+ . . . +Хn вых;

К(р)=К1 (р)+ К2 (р)+ . . . + Кn(р);

(14)

Таким образом, передаточная функция системы, состоящей из n параллельно и согласно включенных звеньев, равна сумме передаточных функций отдельных звеньев.

Для параллельного встречного включения звеньев 1 и 2 (рис.5), передаточные функции которых равны К1(р) иК2(р), имеем:

на входе

на выходе

Знак "+" соответствует положительной обратной связи, знак "-" - отрицательной. Уравнения звеньев будут иметь вид:

, поэтому
.

Отсюда

Сделав перестановку и изменив знаки, получили:

(15)