регистрация /  вход

Эффективность корреляционной обработки одиночных сигналов (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДРАСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

"ЭФФЕКТИВНОСТЬ КОРРЕЛЯЦИОННОЙ ОБРАБОТКИ ОДИНОЧНЫХ СИГНАЛОВ"

МИНСК, 2008

Отношение сигнал/шум на выходе схем корреляционной обработки одиночных сигналов. Потенциальная помехоустойчивость

Все схемные решения корреляционных обнаружителей одиночных сигналов связаны с формированием корреляционного интеграла

где

- опорный сигнал.

Независимо от степени известности начальной фазы принятого сигнала, т.е. независимо от того, совпадает начальная фаза опорного сигнала φг с начальной фазой принятого сигнала φс или не совпадает, удвоенная мощность сигнальной составляющей корреляционного интеграла не зависит от их соотношения:

Удвоенная мощность шумовой составляющей корреляционного интеграла равна:

При этом отношение мощности сигнальной составляющей к мощности шумовой составляющей оказывается равным:

Отношение сигнал/шум по мощности после оптимальной корреляционной обработки определяется исключительно отношением энергии сигнала Эс к спектральной плотности шума N0 и не зависит от формы сигнала. Этот результат является фундаментальным выводом теории потенциальной помехоустойчивости, развитой В.А. Котельниковым. Часто вместо отношения сигнал/шум по мощности

используют другой показатель q - отношение амплитуды сигнальной составляющей |Wс| к среднеквадратическому значению шумовой составляющей
, которое связано с отношением сигнал/шум по мощности
:

Критичность корреляционной обработки к параметрам опорного сигнала.

До сих пор предполагалось, что задержка по времени tз и смещение по частоте Ωк опорного сигнала равны соответственно времени запаздывания trи доплеровскому смещению частоты Ωдс принятого сигнала. В действительности время задержки опорного сигнала tз может точно не совпадать со временем запаздывания принятого сигнала

tз – tr ≠ 0,

а частота коррекции спорного сигнала Ωк может точно не совпадать с доплеровским сдвигом частоты принятого сигнала

Fк – Fдс ≠ 0

Опорный сигнал с произвольной задержкой и частотой коррекции представляется в виде

Нормированная сигнальная составляющая на выходе детектора корреляционного обнаружителя определяется функцией неопределённости сигнала, аргументы которой представляют расстройку опорного сигнала по времени и частоте:

Следовательно, функция неопределённости определяет критичность корреляционной обработки к параметрам опорного сигнала. Критичность к расстройке опорного сигнала по времени запаздывания τ = tз - trопределяется сечением функции неопределённости плоскостью F = 0. Учитывая, что это сечение есть квадрат модуля корреляционной функции закона модуляции сигнала

ρ(τ, о) = |С0(τ) |2,

а эффективная ширина этого сечения или ширина диаграммы неопределённости по оси τ, соответствующей области высокой корреляции, обратно пропорциональна ширине спектра модуляции сигнала

∆τ = 1/∆f0

значение расстройки по времени, при которой уменьшение сигнальной составляющей не превышает 3 дБ (2 раза), должно удовлетворять условию:

Критичность к расстройке опорного сигнала по частоте F = Fk - Fдс определяется сечением функции неопределённости плоскостью τ = 0, Учитывая, что это сечение есть нормированный энергетический спектр квадрата амплитудного закона модуляции сигнала

а эффективная ширина этого сечения или ширина диаграммы неопределённости по оси F, соответствующей области высокой корреляции, обратно пропорциональна длительности сигнала

значение допустимой расстройки по частоте должно удовлетворять условию:

Изложенные соображения относительно допустимой расстройки опорного сигнала по времени и частоте имеют важное логическое продолжение. Формирование корреляционных интегралов (или квадратов их модулей) для двух принятых сигналов происходит раздельно, без всякого взаимного влияния этих сигналов, в том случае, если разность по времени запаздывания ∆tr = tr1 – tr2,

или по доплеровскому смещению частоты ∆Fд = Fдс1 – Fдс2

принятых сигналов не меньше ширины соответствующих сечений функции неопределённости:

Эти соотношения определяют, следовательно, разрешающую способность системы по времени запаздывания и доплеровскому смешению частоты принятых сигналов.

В заключение следует подчеркнуть, что рассмотренный корреляционный обнаружитель предназначен для принятия решения по одному элементу разрешения "дальность - скорость" в некотором анализируемом угловом направлении. Для просмотра всех элементов разрешения по дальности и скорости необходимо иметь либо многоканальный корреляционный обнаружитель (число каналов определяется числом элементов разрешения по дальности и скорости, а взаимная расстройка каналов по времени и частоте определяется соответствующей разрешающей способностью), либо при Наличии одного корреляционного обнаружителя осуществлять перестройку опорного сигнала по времени и частоте. Первый вариант соответствует параллельному или одновременному просмотру всех элементов разрешения по дальности и скорости, а второй - их последовательному просмотру.

Характеристики обнаружения

Ниже рассматриваются три варианта степени известности параметров принятого сигнала.

а) Сигнал с известной начальной фазой и неслучайной амплитудой

При этом решение о наличии или отсутствии сигнала принимается путем сравнения с порогом Х* квадратурной составляющей корреляционного интеграла

формируемой на выходе одноканальной схемы корреляционной обработки на видеочастоте, когда опорный сигнал формируется с учетом известной начальной фазы принятого сигнала

В отсутствие полезного сигнала, т.е. при наличии только гауссова шума, случайная величина X распределена по нормальному закону с нулевым средним и дисперсией

При наличии полезного сигнала распределение случайной величины смещается на величину среднего значения сигнальной составляющей

На рис.1. показаны возможные реализации напряжения на выходе коррелятора в отсутствие и при наличии полезного сигнала на интервале времени от trдо tr + Т0, равном длительности сигнала. На рис.2 показаны соответствующие распределения случайной величины X, формируемой на выходе коррелятора в момент времени t = tr + T0, в отсутствие сигнала Р0(х) и при наличии сигнала P0(x).

При этом вероятность ложной тревоги, как площадь под кривой p0(x) правее порога X*, определяется выражением:

где

- относительный порог,

- закон распределения (плотность вероятности) случайной величины Xна выходе коррелятора в отсутствие сигнала,

- интеграл вероятности, поведение которого показано на рис.3.

Рис.1. Возможные реализации напряжения на выходе коррелятора для сигнала с известной начальной фазой и неслучайной амплитудой.

Рис.2. Законы распределения случайной величины на выходе коррелятора для сигнала с известной начальной фазой и неслучайной амплитудой.

Рис.3. Интеграл вероятности.

Вероятность правильного обнаружения, как площадь под кривой p1(х) правее порога X, определяется выражением:

где

- закон распределения случайной величины X на выходе коррелятора при наличии полезного сигнала,

- отношение сигнал/шум по напряжению на выходе коррелятора.

б). Сигнал с неизвестной начальной фазой и неслучайной амплитудой