регистрация /  вход

Автогенератор с буферным каскадом (стр. 1 из 3)

ОГЛАВЛЕНИЕ

Введение

Автоколебательная система и автогенератор

Варианты решения поставленной задачи

Вариант№1.

Вариант№2

Вариант№3

Выбор и обоснование варианта

Составление принципиальной схемы

Расчет электрической схемы

Расчет автогенератора

Расчет эмитерного повторителя

Заключение

Список использованной литиратуры


ВВЕДЕНИЕ

Электрификация железнодорожного транспорта, рост скоростей движения поездов и наметившееся увеличение грузопотока (особенно за последний 1999 год) приводит к более интенсивному применению средств связи на железнодорожном транспорте. Решение вопроса ускорения оборота вагонов на крупных железнодорожных станциях вызывает необходимость массового использования станционной радиосвязи, применения носимых радиостанций и организации новых видов связи. Расширение областей применения и продолжающееся развитие радиотехники привело к необходимости подготовки качественных специалистов в этой области. Эту задачу помогает решить дисциплина “Каналообразующие устройства автоматики телемеханики и связи”. Главной задачей этой курсовой работы является овладение навыками проектирования каналообразующих устройств, а также повышение уровня подготовки расчетов электронных и электротехнических схем. В нашем конкретном случае необходимо разработать автогенератор гармонических колебаний поэтому необходимо рассмотреть следующие теоретические вопросы.

Задание на проектирование: Разработать автогенератор с буферным каскадом, перестраиваемый в пределах 1 – 1,5 МГц. Назначение – гетеродин в радиоприемнике.


АВТОКОЛЕБАТЕЛЬНАЯ СИСТЕМА И АВТОГЕНЕРАТОР

Автогенератор – это источник электромагнитных колебаний, колебания в котором возбуждаются самопроизвольно, без внешнего воздействия.

Любой автогенератор представляет собой нелинейное устройство, преобразующее энергию питания в энергию колебаний. Независимо от схемы и назначения автогенератор должен иметь источник питания, усилитель и цепь обратной связи, причём обратная связь должна быть положительной.

В качестве усилительных элементов в настоящее время в автогенераторах используются транзисторы или другие аналогичные приборы, а в качестве цепей нагрузки – колебательные цепи с сосредоточенными или распределенными параметрами.

Автогенератор, находящийся в стационарном режиме, представляет собой обычный нелинейный усилитель, для возбуждения которого используются колебания, вырабатываемые в самом генераторе; колебания с выхода подаются на его вход по цепи обратной связи. Если амплитуда и фаза возбуждения отвечают определенным условиям, то в энергетическом отношении автогенератор ведёт себя так же, как и генератор с внешнем возбуждением. Однако генератор с самовозбуждением имеет существенные особенности. Частота и амплитуда автоколебания в стационарном режиме определяются только параметрами самого генератора, между тем, как в генераторе с внешним возбуждением частота и амплитуда колебаний навязываются возбудителем. Кроме того, в случае самовозбуждения большое значение имеет механизм возникновения колебаний при запуске автогенератора.

Все эти особенности можно выявить, рассматривая поведение автогенератора в процессе нарастания колебаний от момента запуска до полного установления стационарного состояния. Можно наметить следующую картину. В момент запуска колебательной цепи автогенератора возникают свободные колебания, обусловленные включением источников питания, замыканием цепей, электрическими флуктуациями и т.д. Благодаря положительной обратной связи эти первоначальные колебания усиливаются, причем на первом этапе, пока амплитуда мала усиление практически линейно и цепь можно рассматривать как линейную. Энергетически процесс нарастания колебаний объясняется тем, что за один период колебания усилитель предает в нагрузку энергию, большую той, которая расходуется в ней за это время. С ростом амплитуд начинает проявляется нелинейность устройства (кривизна вольтамперной характеристики усиленного элемента) и усиление уменьшается. Нарастание амплитуд прекращается, когда усиление уменьшается до уровня, при котором только компенсируется затухание колебаний в нагрузке. При этом, энергия отдаваемая усилителем за один период, оказывается равной энергии, расходуемой за это время в нагрузке.

Таким образом, на последнем этапе установления колебаний основную роль играет нелинейность цепи, без учета которой нельзя определить параметры стационарного режима автогенератора. Любой автогенератор высокочастотных колебаний можно представить в виде схемы представленной на рис.1. На этой схеме автогенератор представлен в виде сочетания трёх четырехполюсников: одного нелинейного, безынерционного, и двух линейных. Нелинейный четырехполюсник соответствует усилительному элементу (транзистор, туннельный диод и т.д.), первый из линейных четырехполюсников – колебательной цепи автогенератора, а второй – цепи обратной связи.

Подобное представление справедливо для автогенераторов с внешней обратной связью. Усилительный элемент совместно с избирательным четырехполюсником, обеспечивающим фильтрацию (подавление) высших гармоник, представляет собой обычный нелинейный усилитель, развивающий на выходе гармоничкское напряжение. В общем случае напряжение зависит как от частоты, так и от амплитуды (из-за нелинейности усилительного элемента). Коэффициент усиления этого устройства – Kу (iwг ,U1 ).

Рис. 1

Очевидно, что

Kу (iwг ,U1 )=U2 /U1 (*)

При фиксированной частоте wг Ky является функцией только амплитуды U1 .

Коэффициент передачи линейного четырехполюсника обратной связи, который в дальнейшем будем называть просто коэффициентом обратной связи, можно выразить через амплитуды U3 и U2 :

Koc (iw)= U3 / U2 ,


Но напряжение U3 , снимаемое с выхода четырехполюсника обратной связи, есть одновременно напряжение U1 , действующее на входе усилителя. Следовательно,

Koc (iw)= U1 / U2

Сравнивая это выражение с выражением (*), приходим к выводу, что в стационарном режиме автогенератора (когда только и можно пользоваться методом комплексных амплитуд) коэффициенты Kу (iwг ,U1 ) и Koc (iw) являются заимно обратными величинами:

Kу (iwг ,U1 )Koc (iwг )=1.

Представим комплексные функции Kу (iwг ,U1 ) и Koc (iwг ) в форме

Kу (iwг ,U1 )=Ку (wг ,U1iy ( w г ) , Koc (iwг )= Koc (wгi y ( w г ) .

Тогда последнее равенство распадается на два условия:

Kу (iwг ,U1 )Koc (iwг )=1(**)

(***)

Условие (**) называют условием баланса амплитуд: из него следует, что в стационарном режиме полное усиление на генерируемой частоте при обходе кольца обратной связи равно единице.

Условие (***) называют условием баланса фаз. Из чего следует, что в стационарном режиме автоколебаний полный фазовый сдвиг при обходе кольца ОС равен (или кратен) 2pi. Условие баланса фаз позволяет определить частоту генерируемых колебаний wг .

Существуют мягкий и жёсткий режимы возбуждения колебаний. Режим, когда колебания возникают самопроизвольно, называется мягким. В АГ с мягким возбуждением состояние покоя (состояние с нулевой амплитудой) неустойчиво. Жёстким называется режим, при котором генерация возникает только при наличии внешнего воздействия, создающего колебания с амплитудой, большей некоторого порогового значения.

Отметим одно важное требование, предъявляемое к автогенератору, предназначенному для устройств связи: вырабатываемое им колебание должно быть строго монохроматическим. Любое нарушение монохроматичности, проявляющееся в паразитном изменении амплитуды, частоты или фазы колебания, может служить причиной возникновения помех в канале радиосвязи. Требование монохроматичности включает в себя также и требование стабильности частоты автоколебания.


ВАРИАНТЫ РЕШЕНИЯ ПОСТАВЛЕННОЙ ЗАДАЧИ

Для решения поставленной задачи прежде всего необходимо выдвинуть ряд требований к проектируемому устройству. Так как проектируемый автогенератор относится к классу гетеродинов, то он должен обладать относительно стабильной частотой генерации. Но, нередко за стабильность приходится “доплачивать”. На основе этих критериев я постараюсь предложить различные альтернативные принципиальные схемы автогенераторов.

Вариант 1

Данный вариант обладает высокой стабильностью частоты т.к. он основан на кварцевой стабилизации. Кварцевая стабилизация является наиболее эффективным способом повышения частоты генераторов. Она основана на применении в схемах кварцевых пластинок с сильно выраженным пьезоэлектрическим эффектом. Если к пластине кварца приложить переменное напряжение, то она испытывает периодические механические деформации, т.е. сжимается и разжимается, что в свою очередь приводит к появлению электрических зарядов на её гранях. В результате в цепи (между входными зажимами) течёт переменный ток. Этот ток имеет две составляющие Ic и Iкв . Реактивный ток Ic протекает через ёмкость. Образованную металлическими пластинами кварцедержателя. Ток кварца Iкв обусловлен наличием пьезоэффекта.

Величина тока кварца зависит от частоты приложенного напряжения. Когда частота подведенного напряжения совпадает с собственной частотой механических колебаний кварца, наступает резонанс, при котором амплитуда колебаний будет максимальной. Пьезоэлектрический ток будет максимальным, а его фаза совпадет с фазой приложенного напряжения. Поэтому вблизи резонансных частот кварцевую пластину можно представить в виде последовательного контура с сосредоточенными постоянными Lk Ck rk и параллельно подключенной к нему емкости кварцедержателя С0 . Практически статическая ёмкость кварцедержателя С0 в сотни раз больше эквивалентной ёмкости кварца Ck , поэтому собственная частота кварца как последовательного контура близка к собственной частоте эквивалентного параллельного контура.

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!