Смекни!
smekni.com

Розрахунок слідкуючої системи (стр. 2 из 3)

Отже робимо висновок, що система задовольняє необхідній точності.

8. Побудова характеристик

8.1Перехідна функція замкненої системи h(t)

Маємо a = 1/р тоді

Запишемо характеристичне рівняння системи :

0,0056р3 + 0,366р2 + р + 26= 0 (19)

За допомогою ЕОМ знаходимо корені рівняння (19):

р1 = -63,698;

р2 = -0,829-8,497j;

р3 = -0,829+8,497j.

Далі для знаходження оригіналу h(t) скористаємося другою теоремою Хевісайда , суть якої в наступному : якщо зображення F(p) функції f(t) має вигляд

;

то її оригінал дорівнює

де pk– корені характеристичного рівняння.

В нашому випадку F1(p) = 26;

F2(p) = 0,0056р3 + 0,366р2 + р + 26;

F’2(р) = 0,0168р2 + 0,732р + 1.


Знайдемо значення F’2к) , де pk– корені характеристичного рівняння.

F’21) = 0,0168(-63,698)2 + 0,356(-63,698) + 1 = 22,538

F’22) = 0,0168(-0,829-8,497j)2 + 0, 356(-0,829-8,497j) + 1 = 6,037е -97,7j

F’23) = 0,0168(-0,829+8,497j)2 + 0, 356(-0,829+8,497j) + 1 = 6,037е 97,7j

Знайдемо вираз для оригіналу h(t):

h(t) = 1 - 0,018е -63,698t+ 0,505e-0,829tj(8,497+ 166,7) + 0,505e-0,829t+ j(8,497t+166,7)

h(t) = 1 – 0,018е63,698t + 0,252e-0,829t cos(8,497t + 166,7)

По одержаному аналітичному виразу будуємо графік

Рис. 2. Перехідна функція замкненої системи h(t)

8.2 Амплітудно-фазова характеристика замкненої системи. Передавальна функція замкненої системи:

Формальною заміною оператора р на jwодержуємо вираз для амплітудно-фазової характеристики.


Запишемо амплітудно-фазову характеристику у вигляді W(jw) = P(jw) + j×Q(jw)

Помноживши на спряжений вираз і зробивши перетворення одержимо:

ТодіP(w) =

Q(w) =

По одержаним рівнянням будуємо графік амплітудно-фазової характеристики.

Рис. 3. Амплітудно–фазова характеристика замкненої системи

Логарифмічно-частотні характеристики

Передавальна функція розімкненої системи має вигляд:

ЛАЧХ будуємо за допомогою спряжених частот

w1 = 1/Тм = 1/0,35= 28,57с-1;w2 = 1/Тп = 1/0,016= 62.5с-1;

wÎ[0, w1] – пряма лінія з нахилом –20 (дб/дек);

wÎ[w1, w2] – пряма лінія з нахилом –40 (дб/дек);

wÎ [w2, ¥] – пряма лінія з нахилом –60 (дб/дек);

ФЧХ системи складається з трьох складових j = j1 + j2 + j3.

j1 = -arctg(1/0) = -90°;

j2 = -arctg(0,35×w);

j3 = -arctg(0,016×w).

Тоді маємо j(w) = –90°arctg(0,35×w) – arctg(0,016×w);

По одержаним залежностям будуємо графіки.

ЛАЧХ і ЛФЧХ розімкненої не корегованої системи:

Рис. 4. ЛАЧХ розімкненої не корегованої системи


Рис. 5. ЛФЧХ розімкненої не корегованої системи


9. Корегування слідкуючої системи

Корегування САК здійснюємо за допомогою пасивної диференційної ланки

Рис. 6. - Передавальна функція ланки має вигляд:

де Т1 = R1×C1 = 65×103×10×10-6 = 0,65c

T2= R1×C1×R2/(R1 + R2) = 0,65×50×103/(65+50)×103 = 0,283c.

G0 = T2/T1= 0,283/0,65 = 0,435

У структурній схемі корегуючу ланку ставимо після електронного підсилювача і перед тиристорним перетворювачем.

10. Передавальні функції окремих елементів корегованої системи

1) Передавальна функція розімкненої системи:

2) Передавальна функція замкненої системи відносно завдання:

3) Передавальна функція для похибки замкненої системи:

5) Передавальна функція замкненої системи відносно збурення:


11. Усталена похибка корегованої системи

Визначимо граничний коефіцієнт підсилення скорегованої системи.

Запишемо характеристичне рівняння скорегованої САК:

ТмТп Т2р4+((Тмп)×Т2мТп 3+(Тмп2)·р2+(1+KG0T1)p+КG0 = 0

0,001132р4 + 0,12р3 +0,693р2 + (1+0,283K)р + 0,435K= 0

Для стійкості необхідно виконання двох умов :

· Правило Стодоли: щоб усі три корені були додатніми, ця умова виконується.

· Критерій Гурвіца: для кубічного рівняння а3 × (а1×а2–а0×а3)–а12× а4> 0

а0 = 0,001132а1 = 0,12а2 = 0,693а3 = 1+ 0,283Kа4 = 0,435K

Маємо квадратнунерівність К2 – 184,4·К – 911,1= 0

Знаходимо корені К1 = 189,2;К2 = -4,8.

Вибираємо К = 189

З умови, що запас стійкості має лежати в межах 2¸3 коефіцієнт підсилення дорівнює

К= Кг/2,5 = 189/2,5 = 75,6

Приймаємо К = 75

Тоді коефіцієнт електронного підсилювача дорівнює:

Кгр = 75/0,21= 357,14

Усталена похибка слідкуючої системи дорівнює:

Де a0 , f0 – усталені значення завдання і збурення відповідно.

Оскільки ми не маємо даних стосовно збурю вальної дії Мс то ми нехтуємо другим доданком. Отже усталена похибка нашої САК дорівнює:


12. Логарифмічні характеристики розімкненої корегованої системи.

12.1 Логарифмічно-частотні характеристики розімкненої корегованої системи.

Передавальна функція розімкненої корегованої системи має вигляд:

ЛАЧХ будуємо за допомогою спряжених частот

w1 = 1/Т1 = 1/0,65= 1,54с-1;w2 = 1/Т2 = 1/0,283= 3,53с-1;

w3 = 1/Тм = 1/0,4= 2,5с-1;w4 = 1/Тп = 1/0,01= 100с-1;

wÎ[0, w1] – пряма лінія з нахилом –20 (дб/дек);

wÎ[w1, w2] – пряма лінія без нахилу;

wÎ[w2, w3] – пряма лінія з нахилом –20 (дб/дек);

wÎ[w3, w4] – пряма лінія з нахилом –40 (дб/дек);

wÎ [w4, ¥] – пряма лінія з нахилом –60 (дб/дек);

ЛАЧХ корегованої системи:

Рис. 7. ЛАЧХ розімкненої корегованої системи.


ЛФЧХ системи складається з трьох складових j = j1 + j2 + j3 + j4.

j1 = -arctg(1/0) = -90°;

j2 = -arctg(0,17×w);

j3 = -arctg(0,008×w)

Тоді маємо j(w)=

– 90°– arctg(0,4×w) – arctg(0,01×w);

По одержаним залежностям будуємо графік.

Рис. 8. ЛФЧХ розімкненої корегованої системи.

12.2 Перехідна функція замкненої корегованої системи

Передавальна функція замкненої корегованої системи має вигляд:

де G0 = T2/T1= 0,283/0,65 = 0,435

Маємо a = 1/р тоді


Підставивши числові значення одержимо

Запишемо характеристичне рівняння системи:

0,001132р4 + 0,12р3 + 0,693р2 + 22,22р + 32,62= 0

За допомогою ЕОМ знаходимо корені рівняння (19):

р1 = –101,9;

р2 = –2,175 – 23,961j= 24,06·e85°j;

р3 = –2,175 + 23,961j= 24,06·e-85°j;

р4 = –1,746.

Далі для знаходження оригіналу h(t) скористаємося другою теоремою Хевісайда , суть якої в наступному : якщо зображення F(p)функції f(t)має вигляд

;

то її оригінал дорівнює

де pk– корені характеристичного рівняння.