Смекни!
smekni.com

Комбинационные схемы (стр. 3 из 4)

Для ПФ y9 (рис.3,ж) построенные подкубы имеют следующие дизтермы:

МКНФ – есть конъюнкция дизтермов.

Пример: МКНФ для ПФ y9 (рис.3,ж) как результат минимизации по нулевым значениям функции имеет вид:

(
) (
) (
). (6)

Ранги контермов или дизтермов, которые входят в логическое уравнение МДНФ или МКНФ переключательной функции, в общем случае не одинаковы.

Общие правила минимизации функций, справедливые для любого числа логических переменных:

- прямоугольные области карты Карно, составляющие подкубы, могут состоять из 1, 2, 4, 8, 16 и т.д. только единичных клеток (при получении МДНФ) или только нулевых клеток (при получении МКНФ);

- для подкубов выбирается минимальный вариант их построения на карте Карно, при котором число подкубов минимально, а их размеры максимальны;

- клетки карты Карно могут неоднократно входить в разные подкубы, если это необходимо для увеличения их размеров и уменьшения их количества.

При минимизации неполностью определенных функций факультативные клетки, обозначенные на карте знаком

, могут включаться в подкубы соседних клеток в тех случаях, когда позволяют сформировать

подкуб либо большего размера, либо такой, который охватит клетки, ранее не включенные ни в один подкуб. Включение клеток со знаком

в подкубы соответствует доопределению функции на соответствующих этим клеткам наборах.

Формирование подкубов с включением в них факультативных клеток позволяет получать более простые, как правило, структурные формулы МДНФ или МКНФ. Минимизация функции

, приведенной на рис.4,а, отличающейся от функции
(рис.3,е) только наличием факультативных клеток, показывает, что включение клеток со знаком
в подкубы позволяет получить выражение функции:

, (7)

которое существенно проще, чем (5) или (6). Существенное различие в сложности формул может иметь место и при минимизации неполностью определенной логической функции при использовании единичных клеток и нулевых клеток (МДНФ и МКНФ). Для функции

, приведенной на рис.4,б, объединение нулевых клеток в подкубы
и
дает минимизированное выражение (МКНФ):
= (
) (
). МДНФ для функции
(рис.4,в) сложнее:
=
.

6. Нормальные формы логических уравнений. Преобразование логических уравнений к заданному базису

Если при проектировании логических схем предъявляется требование получения максимального быстродействия, логическая схема строится на основе представления ПФ в нормальной алгебраической форме.


Всего существует 8 нормальных форм представления ПФ. Получим их на примере проектирования мажоритарной логической схемы (мажоритарного элементы) “2 из 3”, пронумеруем и дадим символьное обозначение путем указания операций первого и второго этапов логического преобразования.

Таблица истинности для мажоритарного элемента приведена в табл.2, карта Карно на рис.5. МДНФ для этой функции является первой нормальной формой. Следующие три нормальных формы получим путем последовательного преобразования МДНФ с применением тождеств двойной инверсии и теоремы де-Моргана. МКНФ – пятая нормальная форма, остальные получены путем ее преобразования.

= 1) И / ИЛИ

=
2) И-НЕ / И-НЕ

=

3) ИЛИ / И-НЕ

. 4) ИЛИ-НЕ / ИЛИ

5) ИЛИ / И

=

=

=

= 6) ИЛИ-НЕ / ИЛИ-НЕ

=

=7) И / ИЛИ-НЕ

=

.8) И-НЕ / И

При проектировании логических схем в зависимости от наличия определенного типа элементов (базиса) используется соответствующая нормальная форма.

7. Скобочные формы логических уравнений

Для аналитического представления переключательных функций можно использовать не только нормальные формы, но и так называемые скобочные формы представления функций. Скобочные формы получаются путем тождественных преобразований МДНФ (МКНФ) с использованием скобок, изменяющих порядок (последовательность) логических преобразований. При вынесении общих членов за скобки порядок функции увеличивается. В практике проектирования логических схем к скобочным формам приходится обращаться в двух случаях: а) когда необходимо уменьшить аппаратные затраты и стоимость при реализации схем на логических элементах; б) когда число переменных и термов велико и реализация функций на основании МДНФ (МКНФ) с использованием стандартных логических элементов (с стандартным числом входов) невозможна. На рис.6,а представлена карта Карно логической функции, МДНФ которой

y = x3 x2 x1

x3 x2 x0
x3 x1 x0 .(8)

Этой функции соответствует логическая схема второго порядка, показанная на рис.6,б. На основании законов дистрибутивности функцию (8) можно представить в форме

y = x3 [ x2 ( x1

x0 )
x1 x0 ],(9)

которой соответствует схема на рис.6,в. В этой схеме максимальное число последовательно включенных логических элементов равно четырем, т.е. логическая схема имеет четвертый порядок. Каждый логический элемент имеет конечное быстродействие, которое характеризуется задержкой распространения сигналов от входа к выходу. Чем выше порядок логической схемы, тем больше задержка сигналов, тем ниже быстродействие схемы. Это недостаток логических схем, реализованных на основе скобочных форм ПФ.

Положительное свойство таких схем – меньшая сложность (аппаратные затраты) и стоимость.

Существует несколько способов оценки сложности логических схем: сложность по Квайну, определяемая как суммарное число входов всех логических элементов; сложность, как число логических элементов; сложность как число условных стандартных корпусов микросхем.

Так, суммарное число входов логической схемы четвертого порядка (рис.6,в) равно 10, а логической схемы второго порядка (рис.6,б) – 12.

В общем случае быстродействие и сложность схемы (стоимость) жестко связаны, при проектировании логических схем можно “обменять” быстродействие на стоимость и наоборот.

Второй пример необходимости использования скобочной формы ПФ рассмотрим на примере проектирования мажоритарного элемента “2 из 3” в двух вариантах: когда допустимо использовать логические элементы И-НЕ с любым необходимым числом входов и когда можно использовать только 2-входовые логические элементы И-НЕ.

В минимальной ДНФ логическая функция мажоритарного элемента в базисе И-НЕ имеет вид


y =

.(10)

Этому уравнению соответствует логическая схема второго порядка рис.7,а, в которой используются 2- и 3-входовые элементы И-НЕ.

Если для реализации схемы разрешается использовать только 2-входовые элементы И-НЕ, то уравнение (10) преобразуется в скобочную форму

y =

,(11)