Смекни!
smekni.com

Энергонезависимая память для телевизоров седьмого поколения (стр. 4 из 11)

Для построения репрограммируемых ПЗУ используется разновидности МОП-технологии:

— для СППЗУ – с лавинной инжекцией заряда и плавающим затвором;

— для ЭСППЗУ – с лавинной инжекцией заряда и с двойным затвором, и технология металл – нитрид кремния – окисел кремния – полупроводник МНОП структура. Широко применяются комбинации этих технологий с КМОП-технологией.

Так как ЭСППЗУ является энергонезависимым, то в основе механизма запоминания и хранения информации лежат процессы накопления заряда при записи, сохранения его при считывании и при выключении электропитания в специальных МОП-транзисторах.

ЭСППЗУ строятся на МОП-транзисторах, у которых между затвором и полупроводником располагается двухслойный диэлектрик, выполненный из нитрида кремния и тонкого слоя двуокиси кремния (так называемая МНОП-структура).

Принцип записи в такой элемент основан на том, что при подаче на затвор МНОП транзистора положительного напряжения, превышающего критическое значение (около 30 В), на границе кремния – нитрид кремния формируется заряд, снижающий пороговое напряжение включения МНОП транзистора. При подаче отрицательного напряжения такого же значения происходит обратный процесс и восстанавливается высокое пороговое напряжение транзистора. Одно из состояний транзистора может быть принято за логическую единицу, а другое состояние – за логический нуль. В режиме считывания на затвор МНОП транзистора подается напряжение, больше порогового напряжения включения транзистора с "низким" порогом, но меньшее порогового напряжения транзистора с "высоким" порогом.

2.3 ЦИФРОВАЯ СИСТЕМА УПРАВЛЕНИЯ I2C

Цифровая система (шина) управления I2C разработана фирмой Philips для применения в бытовой радиоаппаратуре и, в частности, в телевизорах[12]. Она обеспечивает пересылку цифровой информации (данных) и управление микросхемами, имеющими интерфейсы I2C. Включение последних в состав МС существенно уменьшает число их управляющих выводов и упрощает трассировку печатной платы.

Помимо I2C, существуют и другие разновидности систем (шин) управление аппаратурой, например, S-шина, разработанная фирмой SGS-Thomson, или IM-шина, предложенная фирмой ITT. Однако, система I2C пока наиболее распространена. Ее название происходит от английской аббревиатуры IIC - interintegratedcircuit, обозначающей связь между интегральными МС.

I2C представляет собой последовательную двухпроводную магистраль, позволяющую передавать поток цифровой информации в обоих направлениях со скоростью до 100 кбит/с. К магистрали I2C подключают одновременно несколько интегральных МС, причем каждая имеет свой индивидуальный адрес. Ограничением при этом служит суммарная емкость, которая не должна превышать400 пФ. Максимальная длина магистрали - 4 м.

Подключаемые интегральные МС могут быть ведущими, инициирующими обмен информацией (например, микроконтроллеры управления), и ведомыми Причем к магистрали I2C одновременно можно подключить несколько ведущих устройств, так как в ней поддерживается процедура арбитража (состязания). Шина I2C образована двумя двунапрвленными последовательными линиями: данных – SDA и тактовой частоты (синхронизации) – SLC. Каждая линия должна быть подключена к плюсовому проводнику источника питания через резистор R.Схема их пдоключения изображена на рисунке 2.3.1 Выходные каскады МС, подключаемых к шине, имеют открытый сток или открытый коллектор. Резистор R обеспечивает уровень 1 при закрывании всех транзисторов.

Передача информации по шине I2C обеспечивается по битно. Каждому передаваемому биту по линии SDA соотвеотствует генерируемый тактовый импульс на линии SLC. Передаваемая информация в виде постоянного уровня 1ил 0 на линии SDA в течении тактового импульса на линии SLC (уровень 1) должна быть неизменной. Смена информации происходит только в состоянии 0 линии SLC. Эта ситуация показана на рисунке 2.3.2.

В магистрали I2C передача информации начинается с режима "Старт", а заканчивается режимам "Стоп". Эти условия формируется ведущим устройством и их вид представлен диаграммой на рисунке 2.3.3. Режим "Старт" возникает при переходе уровня на линии SDA из состояния 1 в 0 при уровне 1 на линии SLC. Притом же уровне 1 на линии SLC во время перехода на линии SDA уровня из состояния 0 в1 формируется режим "Стоп".После режима "Старт" магистраль считается занятой и освобождается только после режима "Стоп".

Информация передается по шине I2C в виде последовательных байтов, состоящих из восьми битов, при этом первый передается старший бит. На рисунке 2.3.3 видно, что каждому тактовому импульсу из1-8 на линии SLC соответствует передаваемый бит (1 или 0) на линии SDA. В конце каждого байта информации следует сигнал подтверждения, формируемый на линии SLC приемником. Тактовый импульс подтверждения приема генерируется ведущим устройством (импульс 9 на рисунке 2.3.3). Кроме того, она переводит линию SDA в состояние 1 ("отпускает"). При приеме байта информации приемник во время прохождения тактового импульса подтверждения приема должен перевести линию SDA в состояние 0, причем оно действует в течении всего тактового импульса подтверждения. Если приемник, к которому происходит обращение не может принять информацию, линия SDA в момент тактового импульса подтверждения остается в состоянии 1. В этом случае ведущее устройство переходит в режим "Стоп" и прекращает передачу информации. Следовательно, приемник может прервать передачу после любого переданного байта. Кроме того, если приемник не может принять очередной байт, он на некоторое время задерживает передачу информации, переводя линию SCL на уровень 0. Это же происходит и в случае приема каждого бита.

Формат передачи информации по шине показан на рисунке 2.3.4. После формирования режима "Старт" ведущее устройство передает восьмибитную последовательность, состоящую из семибитного адреса приемника, к которому идет обращение, и восьмого бита, определяющего направление передачи информации. После того, как последовательно на шину I2C ведущее устройство подаст сигналы адреса приемника, МС сравнивают семь бит адреса. Если они совпадают для какой-нибудь микросхемы, то она анализирует восьмой бит, чтобы определить направление передачи. Когда этот бит имеет значение 0, ведущее устройство будет передавать информацию приемнику. В случае если бит имеет значение 1, ведущее устройство запросит информацию от приемника.

После того как приемник сформирует сигнал подтверждения адреса (девятый бит), ведущее устройство начинает передавать восьмибитные последовательности информации. Прием каждой последовательности также подтверждается приемником. Передача информации заканчивается формированием режима "Стоп".

Шина I2C позволяет подключать МС, изготовленные по разным технологиям. При работе с напряжениям питания 5 В уровень 0 должен быть не более 1,5 В, уровень 1 - не менее 3 В. Минимальная длительность уровня 0 тактового импульса равна 4,7 мкс, а минимальная длительность уровня 1 тактового импульса равна 4 мкс. Пример использования шины I2C в


условном телевизоре цветного изображения показан на рисунке 2.3.5.




3. ОБОСНОВАНИЕ СТРУКТУРНОЙ СХЕМЫ ЭНЕРГОНЕЗАВИСИМОЙ ПАМЯТИ

3.1 Описание назначения основных блоков

Согласно техническому заданию на дипломное проектирование необходимо разработать электрически стираемое программируемое постоянное запоминающее устройство для телевизоров седьмого поколения. Объемом памяти ЗУ составляет 16К, где К=1024 бит. Структурная схема этого объекта представлена на рисунке 3.1.

На данной схеме показаны, какие блоки входят в ЭСППЗУ. Это входной фильтр, блок логики управления I2C шиной, регистр режимов, компаратор адреса, сдвиговый регистр, указатель адреса, блок задания временной последовательности, генератор высокого напряжения. А также декодер столбцов и декодер строк, страничный регистр и накопитель (8х256х8), генератор и делитель частоты, блок установки по питанию и внутренняя шина.

Рассмотрим назначение всех этих блоков. Входной фильтр предназначен для коррекции амплитуды и длительности импульсов, поступающих от формирователя команд управления. Коррекция амплитуды и длительности импульсов необходимо для того, чтобы согласовать входные уровни I2C интерфейса с параметрами КМОП-структуры микросхемы.

Регистр режимов предназначен исключительно для тестирования, то есть он необходим только на стадии разработки. Он позволяет проверять внутрикристальное программирование микросхемы, исключая воздействие на накопитель генератора высокого напряжения. Воздействие высокого напряжения на накопитель “расшатывает” пороговые напряжения, которые позволяют стирать записывать информацию.

Блок установки по питанию предназначен для того, чтобы он устанавливал все остальные блоки – сдвиговый регистр, указатель адреса, блок задания временной последовательности и генератора в исходное состояние. Блок установки по питанию сам получает сигнал, когда телевизор переходит из дежурного режима в рабочий.

Блок указателя адреса предназначен для выборки последовательности цифровых импульсов, которая следует на декодер столбцов и строк. Также в блоке указателя адреса существует механизм, который вырабатывает импульс предназначенный для автоматического приращения номера адреса. Этот механизм работает в течение 32 байтов и обнуляется в конце его.