Смекни!
smekni.com

Источники электропитания (стр. 1 из 6)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУК УКРАИНЫ

Донбасский горно- металлургический институт

Кафедра ТОЭ

КУРСОВАЯ РАБОТА

на тему:

«ИСТОЧНИКИ ЭЛЕКТРОПИТАНИЯ»

по курсу

«Электронные и микропроцессорные устройства»

Выполнила:

Студентка гр.АКТ-98-1

Теряева Н.В.

Проверил:

Самчелеев Ю.П.

Алчевск

2010

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

1 ФУНКЦИОНАЛЬНАЯ СХЕМА ИСТОЧНИКА ЭЛЕКТРОПИТАНИЯ

1.1 Общая схема

1.2 Трансформатор

1.3 Выпрямители

1.4 Сглаживающие фильтры

2 СТРУКТУРНАЯ СХЕМА СТАБИЛИЗАТОРА И ЕЕ ОБОСНОВАНИЕ

3 ПРИНЦИПИАЛЬНАЯ СХЕМА СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

3.1 Регулирующий элемент

3.2 Измерительный элемент

3.3 Источник опорного напряжения

3.4 Элемент сравнения и усилитель постоянного тока

3.5 Токостабилизирующий двухполюсник

4 РАСЧЕТ СТАБИЛИЗАТОРА

4.1 Расчет силовой части стабилизатора

4.2 Расчет схемы сравнения и УПТ

5 РАСЧЕТ ДОПОЛНИТЕЛЬНЫХ УЗЛОВ ИСТОЧНИКА ПИТАНИЯ

5.1 Расчет трансформатора

5.2 Расчет выпрямителя со сглаживающим фильтром

6. Расчет вспомогательных узлов

6.1 Расчет защиты по перегрузке

6.2 Расчет индикации напряжения питающей сети

6.3 Выбор коммутирующей аппаратуры

ПЕРЕЧЕНЬ ССЫЛОК

ПРИЛОЖЕНИЕ А

ПРИЛОЖЕНИЕ Б

ПРИЛОЖЕНИЕ В


ВВЕДЕНИЕ

В современных радиотехнических устройствах значительное место занимают вторичные источники электропитания. Вторичными источником электропитания называют преобразователи электроэнергии одного вида в электрическую энергию другого вида. Вторичные источники электропитания выполняют множество функций: электрическую изоляцию цепей питания друг от друга и от первичного источника; высокую стабильность вторичного питания напряжения в условиях значительного изменения первичного питания напряжения и нагрузок; эффективное подавление пульсаций во вторичных питающих цепях постоянного тока; требуемую форму напряжений переменного тока. В связи с развитием микроэлектроники и компьютерной техники резко выросли требования к стабильности напряжений и токов. Особенно жесткие требования предъявляют к вторичным источникам электропитания в области измерительной техники.

Вторичные источники питания обычно занимают от 20-80% общего объема радиотехнического устройства. Широкое применение интегральной гибридной технологии резко уменьшают вес и габариты радиотехнических устройств, в то время как относительный объем и вес вторичных источников электропитания возросли. Повышение необходимости, а также уменьшение веса, габарита и стоимости изделий в значительной степени зависит от правильного выбора и проектирования вторичных источников электропитания.

Источники вторичного электропитания (ИВЭП) по своей физической сущности являются преобразователями вида и качества электрической энергии. Довольно редко (и только в автономных системах) удается осуществить питание всех устройств непосредственно от первичного источника электропитания, т.е. от преобразователя неэлектрической энергии в электрическую. В большинстве случаев первичный источник или стандартная сеть по частоте, стабильности или напряжению оказываются непригодными для питания электронных устройств. Потому возникает необходимость преобразования электрической энергии.

Вторичные источники могут быть весьма разнообразными, а преобразуемое напряжение - постоянным от нескольких вольт или переменным до сотен вольт.

Электрические преобразования касаются, в основном, необходимых значений и показателей качества выходных напряжений и токов источника. Самое важное из эксплуатационных требований - надежность функционирования при определенных внешних условиях. Конструкторско-технологические требования ориентируют разработчика на выбор элементной базы, определяют допустимую массу, объем и форму источника, а также накладывают ряд ограничений на отдельные показатели конструкции (вибропрочность, влагостойкость и т.д.).

Токи утечки в высоковольтных источниках малой мощности могут составлять заметную часть тока нагрузки, и их устранение облегчает режим работы (вплоть до пробоя) транзисторов и микросхем.

Большое значение имеют методы проектирования оптимизированных по массе и объему ИВЭП. Разработка таких методов сопряжена с рядом трудностей: высокие требования к качеству электропитания, характеристикам переходных процессов и надежности источника; инерционность современных высоковольтных биполярных транзисторов и значительное напряжение насыщения мощных полевых транзисторов, приводящее к снижению КПД преобразователей и регуляторов; несовершенство используемых методов теплоотвода, заставляющих применять элементы конструкции с большими поверхностями и значительной массой; высокий уровень помех при импульсных методах регулирования; большие потери мощности и малая индукция насыщения у магнитных материалов, работающих на высоких частотах.

Основной трудностью остается удовлетворение всей совокупности требований к источнику питания, поскольку, улучшая отдельные показатели, ухудшаем другие. Поэтому сегодня усилился поиск новых схемотехнических решений в области ИВЭП. Особенно ценными являются те, которые позволяют улучшить, если не все, то хотя бы несколько показателей качества.


1 ФУНКЦИОНАЛЬНАЯ СХЕМА ИСТОЧНИКА ЭЛЕКТРОПИТАНИЯ

1.1 Общая схема

Современные стабилизированные источники вторичного электропитания отличаются многообразием решений структурных, функциональных, принципиальных схем и узлов. Это объясняется столь же многочисленными и разнообразными требованиями, которые предъявляются радиоэлектронной аппаратурой к источникам питания.

Стабилизированные источники вторичного электропитания условно классифицируются по основным признакам: по роду тока входного и выходного напряжений различают преобразователи напряжений переменного тока в переменный, переменного в постоянный, постоянного в переменный, постоянного в постоянный, комбинированные преобразователи напряжения; по виду регулирующих (исполнительных) элементов - ламповые, магнитные, полупроводниковые (транзисторные, тиристорные, на интегральных микросхемах), магнитополупроводниковые и пр.; по номинальному напряжению - низкого напряжения (до 100В), среднего (100-1000), высокого (свыше 1000В); по допустимому отклонению выходного напряжения (нестабильности) - низкой точности (свыше 5%), средней (1-5%), высокой (0.1-1%), прецизионной (менее 0.1%); по пульсациям входного напряжения - с малым коэффициентом пульсации (менее 0.1%), средним (0.1 до 1%), большим (более 1%); по выходной мощности - микромощные (до 1Вт), малой мощности (1-ЮВт), средней (10-100Вт), повышенной (100-ЮООВт), большой (свыше 1000Вт); по способу регулирования напряжения - непрерывные и импульсные; по наличию цепи обратной связи -без нее (параметрические), с одной и несколькими цепями обратной связи (компенсационные), комбинированные и пр.

Любой стабилизированный источник вторичного электропитания представляет собой совокупность нескольких функциональных узлов, выполняющих различные виды преобразования электрической энергии: выпрямление, фильтрацию, инвертирование, трансформирование, регулирование, стабилизацию, усиление, защиту и т.д. Эти функциональные узлы характеризуются рядом признаков: назначением, входными и выходными параметрами, условиями эксплуатации, элементной базой.

Выпрямитель В - преобразователь напряжения переменного тока любой формы в однополярное (пульсирующее) напряжение. Он представляет собой один или несколько нелинейных элементов с односторонней проводимостью, соединенных в одну из многочисленных схем выпрямления.

Фильтр Ф - устройство содержащее С, L и активные R элементы и предназначенное для уменьшения пульсации выпрямленного напряжения. Фильтр используется также для защиты от помех, поступающих во вторичный источник из первичной питающей сети, и для уменьшения уровня помех, создаваемых самим вторичным источником питания в первичной сети.

Инвертор И - статический преобразователь напряжения постоянного тока в переменный. Выполняется на полупроводниковых приборах - транзисторах или тиристорах, работающих в режиме переключения. Форма напряжения на выходе прямоугольная, реже синусоидальная, пилообразная и т.д.

Трансформатор Т - преобразователь напряжения переменного тока одного номинала в одно или несколько напряжений переменного тока других номиналов.

Трансформатор применяется в источнике вторичного электропитания как самостоятельный узел или входит в состав других узлов, например усилитель мощности. Стабилизатор напряжения СН - устройство, поддерживающее неизменным напряжение постоянного тока или переменного тока в заданных пределах при воздействии различных возмущающих воздействий. В результате, в ряде случаев стабилизатор напряжения осуществляет точную установку номинала выходного напряжения, обеспечивает возможность плавной регулировки напряжения. Стабилизаторы напряжения постоянного тока с непрерывным способом регулирования могут подавлять переменную составляющую в напряжении постоянного тока.

Регулятор напряжения РН - устройство, изменяющее напряжение на нагрузке по требуемому закону в заданном диапазоне регулирования. В качестве РН может быть использована любая схема стабилизации напряжения, у которой разомкнута ООС. Вместо ошибки регулирования в цепь ООС регулятора подается внешний управляющий сигнал, значение которого меняется вручную или автоматически заданной программе.

Отдельные функциональные узлы ИВЭП могут совмещать в себе несколько функций: выпрямление и регулирование напряжения постоянного тока в регулируемом выпрямителе ВР; инвертирование, выпрямление и фильтрацию напряжения постоянного тока в конверторе К; инвертирования, трансформацию и стабилизацию СИ (стабилизированный инвертор). Подобные схемы позволяют упростить схему источника вторичного электропитания, повысить его КПД и надежность работы. На рисунке 1.1 показан один из вариантов функциональных схем ИВЭП.