регистрация /  вход

Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

кафедра РЭС

реферат на тему:

«Особенности практического применения способов кодирования. Способы декодирования с обнаружением ошибок»

МИНСК, 2009


Задача кодирования заключается в формировании по информационным словам a(x) кодовых слов (x) циклического (n,k)-кода, который по своей структуре может быть несистематическим и систематическим.

Формирование кодовых слов несистематического кода заключается в умножении многочлена a(x), отображающего информационную последовательность длины k, на порождающий многочлен, т.е. (x)=a(x)(g(x). Формирование кодовых слов систематического кода заключается в преобразовании информационной последовательности a(x) в соответствии с выражением (x)=a(x)xr +r(x).

Проверочная последовательность r(x) определяется двумя способами:
при использовании "классического" способа кодирования

;
при использовании способа кодирования, рекомендованного МККТТ
,
где x(1)r-1 - единичный многочлен степени (r-1).

Указанные выше математические операции выполняют кодеры несистематического и систематического кодов.

Способы декодирования с обнаружением ошибок

Процедура декодирования циклического кода с обнаружением ошибок, по аналогии с процессом кодирования, использует два способа:
- при кодировании "классическим" способом декодирование основано на использовании свойства делимости без остатка кодового многочлена (x) циклического (n,k)-кода на порождающий многочлен g(x). Поэтому алгоритм декодирования включает в себя деление принятого кодового слова, описываемого многочленом

на g(x), вычисление и анализ остатка r(x). Если r(x)=0, то принятое кодовое слово считается неискаженным. Если r(x)0, то принятое кодовое слово стирается и формируется сигнал "ошибка".
- при кодировании способом МККТТ декодирование основано на свойстве получения определенного контрольного остатка R0 (x) при делении принятого кодового многочлена (x) на порождающий многочлен. Поэтому, если полученный при делении остаток
, то принятое кодовое слово считается неискаженным. Если остаток
, то принятое кодовое слово стирается и формируется сигнал "ошибка". Значение контрольного остатка определяется из выражения
.

Способы декодирования с исправлением ошибок и схемная реализация декодирующих устройств

Декодирование циклического кода в режиме исправления ошибок можно осуществлять различными способами. Ниже излагаются два способа, являющиеся наиболее простыми.

В основу первого способа положено использование таблицы синдромов (декодирования), в которой каждому многочлену или образцу ошибок ei (x), соответствует определенный синдром Si (x), представляющий остаток от деления принятого кодового слова

и соответствующего ему ei (x) на g(x). Процедура декодирования следующая. Принятое кодовое слово
делится на g(x), определяется Si (x) и соответствующий ему многочлен ei (x), а затем
суммируется с ei (x). В результате получаем исправленное кодовое слово, т.е.
.

В состав декодера входят: вычислитель синдрома (ВС), два регистра сдвига RG1 и RG2, постоянное запоминающее устройство (ПЗУ), которое содержит

слова длины n, соответствующие многочленам ошибок ei (x).
Принятое кодовое слово
поступает на вход вычислителя синдрома, где осуществляется деление его на g(x) и формирование Si (x), и одновременно - на вход RG2, где
накапливается. Синдром Si (x) используется в качестве адреса, по которому из ПЗУ в регистр RG1 записывается ei (x), соответствующий синдрому Si (x). Перечисленные операции завершаются за n тактов. В течение последующих n тактов происходит поэлементное суммирование содержимого RG2 и RG1, т.е. операция
, и исправление. ошибок.

В основе второго способа исправления ошибок, позволяющего значительно сократить объем используемых табличных синдромов и существенно упростить схему декодера, лежат следующие положения:

1. Синдром Si (x), соответствующий принятому кодовому слову равен остатку от деления

на g(x), а также остатку от деления соответствующего многочлена ошибок ei(x) на g(x), т.е.
.

2. Если Si (x) соответствует

и ei (x), то x( Si (x) является синдромом, который соответствует
и
или
.

3. При исправлении ошибок используются синдромы образцов ошибок только с ненулевым коэффициентом в старшем разряде.

Поэтому при реализации этого способа множество всех образцов ошибок разбивается на классы эквивалентности. Каждый класс представляет циклический сдвиг одного образца ошибок, а синдром этого класса соответствует образцу ошибок с ненулевым старшим разрядом. Если вычисленный синдром принадлежит одному из классов эквивалентности образцов исправляемых ошибок, то старший символ кодового слова исправляется. Затем принятое слово и синдром циклически сдвигается, а процесс нахождения в предыдущей по старшинству позиции повторяется.

Для исправления ошибок, принадлежащих данному классу эквивалентности, нужно произвести n циклических сдвигов.

Простейшим является декодер Меггитта. В состав декодера входят: вычислитель синдрома, осуществляющий деление кодового слова

на g(x) и формирование соответствующего синдрома; блок декодеров (ДК), который настроен на синдромы всех образцов исправляемых ошибок с ненулевыми старшими разрядами; регистр сдвига RG.

При поступлении на вход схемы кодового слова

его символы заполняют регистр RG, а в вычислителе формируется соответствующий синдром Si (x). Вычисленный синдром сравнивается со всеми табличными синдромами, заложенными в схему блока ДК, и в случае совпадения с одним из них на его выходе формируется сигнал, который исправляет ошибочный символ, находящийся в старшем разряде регистра. После этого содержимое вычислителя и RG циклически сдвигается на один шаг. Этот сдвиг реализует операции
и
. Если новый синдром совпадает с одним из табличных синдромов, то это означает, что произошла ошибка во втором по старшинству символе кодового слова, который, перейдя в старший разряд RG, исправляется. Затем производится новый циклический сдвиг на одну позицию и новая проверка на совпадение синдромов. После повторения этого процесса n раз в RG будет сформировано исправленное кодовое слово. Введение обратной связи для RG не обязательно, так как в процессе исправления ошибок символы кодового слова поступают на выход декодера.

Пример. Рассмотрим схему и работу декодера Меггитта циклического (15,7)-кода, обеспечивающего исправление одиночных и двойных ошибок, с g(x)=x8 + x7 + x6 + x4 +1 (см. рисунок 1).












Блок декодеров настраивается на 15 синдромов, которые представлены в таблице 1 и соответствуют классам эквивалентности с образцами ошибок в старшем разряде.

Таблица 1
е(х) S(x) е(х) S(x)
1 x14 x7 + x6 +x5 + x3 9 x14 + x6
2 x14 + x13 x7 + x4 +x3 + x2 10 x14 + x5 x7 + x6 +x3
3 x14 + x12 x7 + x6 +x4 + x 11 x14 + x4 x7 + x6 +x5 + x4 +x3
4 x14 + x11 12 x14 + x3 x7 + x6 +x5
5 x14 + x10 13 x14 + x2 x7 + x6 +x5 + x3 +x2
6 x14 + x9 14 x14 + x1 x7 + x6 +x5 + x3 +x
7 x14 + x8 15 x14 + x0 x7 + x6 +x5 + x3 +0
8 x14 + x7

Допустим, что ошибки в 3 и 5 разрядах, т.е. им соответствует многочлен ошибки e(x)=x12 +x10 .