Смекни!
smekni.com

Технологічний процес виробництва РЕА та його автоматизація (стр. 8 из 13)

Складніше за все відбувається впровадження ГАП в складальні виробництво, це пов'язано:

- Зі складністю і різноманітністю об'єктів складання і необхідної для цієї збірки оснащення;

- Коротким циклом операцій складання;

- Нежорсткі або пружністю деталей;

- Необхідністю в налаштуванні, підгонці та обліку малих допусків у зчленуванні деталей.

У складальних ГАП центральним компонентом є роботи з розвиненою сенсорикою і високим рівнем машинного інтелекту, що впливає на збільшення рівня витрат при створенні ГАП збірки. Оскільки роботи з інтелектуальними засобами управління ще не набули широкого розповсюдження, то доводиться різко підвищувати витрати на периферійне устаткування і оснащення, створюючи умови для застосування більш простих роботів. При цьому вартість оснащення та периферії складає до 70% від загальної вартості складального модуля. Далі будуть більш детально розглянуті економічні і соціальні аспекти використання роботів.

Однак, ГАП не є ефективним для будь-яких типів виробництв.

Перспективи розвитку ГАП пов'язані з усе більш масштабної інтеграцією в складі однієї системи різних виробничих функцій і повною передачею цих функцій під контрольоване управління від ЕОМ на базі новітніх СВТ (ЕОМ 5-го покоління, що базуються на принципах штучного інтелекту), розвинених засобах обробки графічної і мовної інформації, лазерної та іншої техніки вимірювання, волоконнооптичних лініях зв'язку і розподілено мережевих методах обробки інформації.

1.9 Перспективи застосування засобів обчислювальної техніки в технології виробництва РЕА

Нижче наведені застосовувані засоби і способи гнучкої автоматизації виробництва та основні досягаються результати їх застосування.

1. Багатоцільове технологічне обладнання з мікропроцесорним управлінням. Підвищується концентрація операцій, збільшується час безперервної роботи, підвищується продуктивність робіт, якість та ідентичність виробів, скорочується потреба в робочій силі, виробничих площах і устаткуванні, скорочується тривалість виробничого циклу виготовлення РЕА, збільшуються системна гнучкість, надійність і живучість ДПС.

2. Мікропроцесорні локальні системи управління (ЛСУ) технологічним та іншими видами устаткування. Забезпечується багатофункціональний характер керованих від ЛСУ верстатів, збільшується продуктивність обладнання, підвищується якість виробів, що випускаються, знижується обсяг апаратурної частини, завдяки чому підвищується надійність системи та обладнання, зростає рівень уніфікації (як конструктивної, так і функціональної); знижується вартість ЛСУ і устаткування, спрощується сполучення з ЕОМ групового управління.

3. Промислові роботи (ПР). Автоматизація операцій завантаження-вивантаження обладнання, інваріантність до цих операцій, автоматизація деяких транспортних операцій, при цьому виключається ручна праця, скорочується тривалість операцій завантаження-вивантаження, транспортування, підвищується автономність роботи обладнання і системна живучість; збільшується коефіцієнт завантаження обладнання, знижується потреба в робочій силі .

4. Комплекси устаткування ЦПК, ДПС (з управлінням від ЕОМ), РТК, АТСС, СЦК. Автоматизація не тільки основних, але і допоміжних операцій (транспортні, складські, контрольно-вимірювальні роботи); виключається (скорочується) потреба в робочій силі: скорочується весь виробничий цикл випуску виробів; СЦК підвищує вірогідність контролю і сприяє цим підвищенню якості виробів, діагностика обладнання дозволяє підвищити надійність обладнання і комплексів.

5. ЕОМ для управління комплексом. Оперативне управління групою обладнання з одночасним підвищенням коефіцієнта його завантаження; забезпечується облік та оптимізація розподілу ресурсів, підвищується продуктивність, скорочується обсяг страхових заділів і обсягів незавершеного виробництва; виключаються багато додаткові операції, які вводилися через обліку тривалого зберігання напівфабрикатів на складі (наприклад, додаткове лудіння висновків); підвищується надійність, гнучкість, спрощується узгодження з ЕОМ цехового рівня.

6. Високий рівень уніфікації, стандартизації всіх засобів автоматизації виробництва (включаючи ТП, обладнання, ПР, оснащення, інструмент, програмне забезпечення). Скорочуються терміни і трудомісткість проектування, виготовлення та налагодження зазначених коштів, знижується собівартість, підвищується надійність.

7. Системи автоматизованого проектування (САПР) та системи наукових досліджень (АСНИ) на базі великих ЕОМ. Автоматизація процесу проектування виробів РЕА з проведенням попередніх досліджень сприяє підвищенню якості РЕА, скорочує трудомісткість і терміни проектування.

8. Автоматизована система технологічної підготовки виробництва (АСТПВ) на базі великих ЕОМ. Автоматизація розробки ТП, керуючих програм на всі види устаткування і всі вироби планованого періоду і зберігання їх в пам'яті ЕОМ, автоматизація проектування технологічного оснащення, скорочується трудомісткість і терміни технологічної підготовки виробництва.

9. Автоматизовані системи управління виробництвом на базі великих ЕОМ. Автоматизація процесів планування, матеріального забезпечення виробництва, оперативного управління процесом виготовлення виробів РЕА.

10. Комплексні інтегровані системи єдиного ланцюга проектування-виготовлення (ІПК). Об'єднання всіх процесів, пов'язаних з проектуванням, підготовкою виробництва та виготовлення виробів в єдину безперервну ланцюг; успішна адаптація конструкції виробу до умов виробництва, підвищується ефективність випуску виробів, значно скорочується обсяг перетворень інформації про виріб, що виконується при роздільному використанні САПР, АСТПП, АСУП, АСУГПС , що дає можливість здійснити принцип "один раз ввести і багаторазово використовувати інформацію", тобто виключити пристрої введення, перетворення АСУТПП, АСП, АСУГПС і залишити їх тільки, наприклад, в САПР; значно скорочується цикл проектування-виготовлення; підвищується якість виробів; знижується собівартість; економляться матеріальні ресурси.


1.10 Застосування роботів на допоміжних і транспортних виробничих операціях

В даний час роботи в основному застосовуються при операціях транспортування, складання, обслуговування обробного устаткування, зварювання та контролю. З точки зору обчислювальної навантаження на керуючу ЕОМ виробничі операції можна підрозділити на два види:

- Інформаційно прості операції, до них відносяться операції перенесення великої кількості предметів чи важких предметів;

- Інформаційно складні операції (збирання і контролю).

Основним напрямом вдосконалення роботів є розвиток застосування мікро-ЕОМ з 8, 16 і 32-розрядними мікропроцесорами, розвиненими операційними системами і завданню орієнтованими мовами програмування високого рівня. Перспективним напрямком є використання аналогових мікропроцесорів, тобто великих інтегральних схем, де в одному кристалі реалізовані як цифрові елементи - мікропроцесор, так і цифро-аналогові і аналого-цифрові перетворювачі, схеми управління периферійними пристроями.

Для реалізації високонадійних систем керування роботами все більше знаходять застосування адаптивні мікропроцесори з БІС, тому що в цих пристроях є резервні вузли, засоби діагностики відмов та самовідновлення, що реалізують адаптивні внутрішні зв'язки, що сприяють збільшенню надійності роботооріентірованних обчислювальних пристроїв до показників, що відповідають виробничим вимогам.

1.11 Алгоритми керування роботами

Алгоритми та методи навчання роботів поділяються на:

- Пряме навчання;

- Роботооріентірованное програмування;

- Метод задачного-орієнтованого програмування.

При прямому навчанні передбачається ручне переміщення робота в усі необхідні положення та запис відповідних їм узагальнених координат зчленувань. Виконання програми полягає у переміщенні зчленування робота відповідно до заданої послідовністю положень і не вимагає універсальної обчислювальної машини. Обмеженням є те, що неможливо використовувати датчики. Цей метод програмування ефективний для точкового зварювання, фарбування і простих вантажно-розвантажувальних робіт з фіксованими положеннями робочого органу і оброблюваної деталі в захищеній від потрапляння сторонніх предметів і людей зоні.

При роботооріентірованном програмуванні використовуються датчики і суть програмування полягає в тому, що відбувається опитування датчиків і визначається рух робота в залежності від обробки сенсорної інформації. Перевагою цього методу є те, що при використанні сенсорної інформації робот може функціонувати в умовах певної невизначеності. Цей метод використовується для складання або контролю якості збірки. Спростити процедуру програмування можна шляхом використання в роботооріентірованних мовах методу машинної графіки, який пов'язаний із заміною методу прямого навчання моделюванням робочого простору роботів. Цей метод в значній мірі відтворює процес прямого навчання роботів з такими його перевагами, як можливості вільної зміни точки зору, візуального контролю взаємного положення всіх елементів робочого простору, інтерактивної налагодженням. Підключення САПР до процесу програмування роботів дозволяє різко підвищити ступінь інтеграції робота з виробничою системою, тобто одна і та ж БД може бути використана для всієї виробничої системи.

При методі задачного-орієнтованого програмування визначається не рух роботів, а бажане розташування об'єктів. Вихідною інформацією для цього методу програмування є геометрична модель робочого простору і робота. Такі системи називаються системами моделювання робочої обстановки. Характерною особливістю таких систем є відмова від детального програмування конкретних дій робота і програмування задачі в термінах взаємного положення об'єктів в робочому просторі і його змін. Фактично дії робота будуються за допомогою методів штучного інтелекту на основі моделі робота і оточуючих його об'єктів. Тут також велике значення має геометрична модель.