Смекни!
smekni.com

Система электронного управления магнитно-резонансного томографа (стр. 2 из 5)

РЧ катушки. Упрощенные схемы цепей катушек для тела и для головы изображены на рис.4. Катушки для тела, как уже говорилось, образуют две ортогонально расположенные пары – горизонтальную (ГК) и вертикальную (ВК).

Напряжение возбуждения на катушки подается по общему коаксиальному фидеру. Для сдвига фаз токов на 90о в цепи горизонтальной и вертикальной пар включены соответственно индуктивность L1 и емкость С1. Для защиты от перегрузок по напряжению входов предварительного усилителя и устранения шунтирующего действия передатчика используются встречно-параллельные пары диодов. При возбуждении катушек через диоды протекают большие токи и их сопротивления малы. При этом диодные пары, включенные на входах усилителя, играют роль двухсторонних амплитудных ограничителей. Для слабых же МР сигналов диоды представляют собой большие сопротивления, благодаря чему диодные пары, включенные в цепи катушек за фидером, как бы отключают их от передатчика. Помеха, возникающая на входах усилителя, хотя и уменьшенная диодными ограничителями, все-таки остается слишком большой (0,7 В). Поэтому на практике применяют более сложные способы подавления помех.

а б


Рисунок 4. РЧ катушки: для тела (а) и головная (б).

Катушка для головы надевается непосредственно на голову пациента и подключается к предварительному усилителю коротким коаксиальным кабелем с разъемом. Она состоит из двух секций, каждая из которых содержит пару катушек – сигнальную (L1) и компенсирующую (L2). Эти катушки находятся в непосредственной близости друг от друга и имеют почти стопроцентное сцепление. При возбуждении излучающей системы (катушки для тела) в сигнальной катушке L1 наводится сильная помеха. Для ее компенсации и служит катушка L2. В ее цепи возникает большой ток, создающий размагничивающее поле для L1 и тем самым компенсирующее помеху. По окончании РЧ импульса сопротивление диодной пары становится большим и на слабый МР сигнал катушка L2 не оказывает шунтирующего действия. Этой же цели служит нелинейная индуктивность L3.

Для исследования области спины применяется отдельная катушка в виде плоской рамки. Переключение входов предварительного усилителя на тот или иной источник сигнала (антенну) осуществляется с помощью контактного переключателя.

Предварительный усилитель МР сигнала предназначен для усиления очень слабых РЧ откликов, поэтому к нему предъявляются повышенные требования в части собственных шумов. Это требование удовлетворяется, как и в видеоусилителях рентгеновских телевизионных систем, применением во входных каскадах малошумящих полевых транзисторов. Но в отличие от видеоусилителя предварительный усилитель МРС принимает узкополосный сигнал, поэтому от внешних и внутренних помех можно дополнительно отстроиться с помощью селективных цепей. Одна из возможных схем предварительного усилителя МРС приведена на рис.5.


Рисунок 5. Предварительный усилитель МР сигнала.

Сигналы от РЧ катушек поступают на входы 1 и 2 «вертикального» и «горизонтального» каналов. Сильные сигналы (помехи), возникающие при возбуждении катушек, ограничиваются двусторонними диодными ограничителями, которые уже были показаны на рис.4. В каждом канале сигналы усиливаются повторителем на малошумящем полевом транзисторе (например, КП307) и усилителем напряжения У1, который может быть выполнен на быстродействующем операционном усилителе. Нагрузкой повторителя служит дроссель L1. Его сопротивление переменному току будет большим, а сопротивление постоянному – маленьким. Поэтому напряжение затвор-исток полевого транзистора оказывается практически равным нулю. Крутизна транзистора будет при этом максимальной.

Для повышения стабильности усиления каждый канал охвачен параллельной отрицательной ОС через емкости С1, С2, С3, а дроссель для повышения устойчивости схемы зашунтирован высокоомным сопротивлением.

Так как сигналы каналов ВК и ГК находятся в квадратуре, то при их простом объединении на входе суммирующего усилителя амплитуда результирующего сигнала была бы только в

раз больше амплитуды одного из них. Во избежание потери усиления их фазы сдвигаются соответственно на -45о и +45о с помощью фазосдвигающей цепочки R1, R2, C4, поскольку, как это видно из рис.4, напряжение в канале ГК отстает от напряжения в канале ВК. Таким образом, на входе усилителя они оказываются в одной фазе. Как правило, общее усиление предварительного усилителя составляет около 2000. При этом его выходное напряжение получается равным примерно 40 мВ, что косвенным образом свидетельствует об очень малой величине МРС (»20 мкВ).

Передатчиком в МРТ обычно называют многокаскадный усилитель мощности и модулятор. Особенность его работы заключается в том, что он должен развивать большую мощность в течение действия сравнительно короткого РЧ импульса при достаточно большой скважности (длительность РЧИ составляет 3 – 8 мс, а длительность периода повторения обычно не менее 40 мс). Поэтому средняя выходная мощность передатчика сравнительно невелика. Тем не менее, для повышения надежности в его выходных каскадах применяют мощные высокочастотные транзисторы. В частности, разработчики охотно используют полевые транзисторы с изолированным затвором благодаря небольшой мощности, необходимой для их раскачки. Пример построения схемы передатчика показан на рис.6.


Рисунок 6. Передатчик РЧ сигнала.

Несущая со смещенной частотой непрерывно поступает от РЧ блока. Она не обязательно должна иметь форму гармонического колебания – это может быть и прямоугольное напряжение (меандр). Главное требование, предъявляемое к ней – стабильность частоты и амплитуды. Сигнал огибающей поступает от блока выбора слоя. Несущая усиливается двухтактным усилителем. Его первый каскад на транзисторах VT1, VT2 (резистивный) раскачивает мощный выходной каскад на полевых транзисторах с изолированным затвором VT7, VT8. Для согласования входного и выходного каскадов служат двухтактные эмиттерные повторители на комплементарных парах транзисторов VT3, VT4 и VТ5, VT6.

Модуляция осуществляется с помощью транзисторов VT9, VT10, которые управляют током специального источника питания. Такой способ питания называют «плавающей землей» или «подземным» источником. При отсутствии РЧИ потенциал точки а равен нулю, поэтому напряжение Uси полевых транзисторов также равно нулю, и ток в цепи РЧ катушек отсутствует. Поступающий от формирователя огибающей сигнал открывает транзисторы VT9, VT10, и потенциал точки а понижается. Это приводит к отпиранию транзисторов VT7, VT8 и возбуждению тока в РЧ катушках. Рассмотренный способ модуляции аналогичен анодной или коллекторной модуляции. Он характеризуется высокой линейностью воспроизведения огибающей в широком динамическом диапазоне, но требует большой мощности от модулятора. Для обеспечения пропорциональности между управляющим сигналом огибающей и выходным напряжением модулятора усилитель огибающей охватывают глубокой отрицательной ОС по напряжению.

Для работы в выходном каскаде передатчика подходят мощные полевые транзисторы КП904А, Б с максимальной мощностью рассеяния 75 Вт и минимальной крутизной около 250 мА/В. При выходном токе 1,4 А, взятом из ранее рассмотренного примера, потребуется напряжение Uзи = 1,4/0,25 = 5,6 В. Емкость затвор-исток этих транзисторов составляет около 200 пФ. На частоте 5 МГц их входной ток будет равен

» 35 мА, т.е. ток получается достаточно большим. Но если бы использовать биполярные транзисторы, он был бы не меньше, а линейность была бы хуже.

Во вторичной цепи трансформатора Т2 включена пара встречно-параллельных диодов. Она, как и аналогичные пары в цепях РЧ катушек, служит для отключения выхода передатчика во время приема МР сигнала с целью предотвращения его шунтирования сравнительно малым выходным сопротивлением трансформатора.

Рассмотрим теперь более подробно устройство РЧ блока. Основными его частями являются генератор смещенной частоты и синхронный детектор МР сигнала. Структурная схема генератора приведена на рис.7.


Рисунок 7. Генератор сигналов смещенной частоты.

Принцип смещения частоты основан на тригонометрическом преобразовании

cos(f0 ±fсм) = cos(f0) cos(fсм)

sin(f0) sin(fсм),

или (1)

sin(f0 ± fсм) = sin(f0) cos(fсм) ± cos(f0) sin(fсм).

В тригонометрических выражениях (1) для простоты вместо wt условно записаны частоты f. Таким образом, для смещения частоты f0 нужно выполнить операции умножения и сложения двух пар квадратурных гармонических функций. Нулевая частота смещения соответствует слою, проходящему через центр магнита. Для выбора слоя по разные стороны относительно центра в выражениях (1) следует менять знаки при вторых слагаемых. Физически для этого достаточно проинвертировать функцию sinfсм. Квадратурные сигналы с частотой f0 получают с помощью опорного генератора с частотой 2f0, делителя на 2 и фазосдвигающего устройства, обеспечивающего сдвиг фаз на 90о. Наиболее просто деление частоты на 2 и сдвиг фаз можно реализовать с помощью цифровых схем. Для этого можно использовать быстродействующие элементы типа ЭСЛ (эмиттерно-связанная логика) серий К500 или К1500. Эти микросхемы обладают также достаточно большой выходной мощностью. Деление частоты на 2 выполняется триггером, поэтому переменные напряжения частотой f0 имеют форму симметричных прямоугольных импульсов (меандра), что важно с точки зрения точности преобразования. Квадратурные сигналы с частотой fсм гармонической формы поставляет специальное формирующее устройство блока выбора слоя.