регистрация /  вход

Схемы выпрямления (стр. 1 из 3)

Федеральное агентство по образованию

Федеральное государственное образовательное учреждение среднего профессионального образования

Чебоксарский электромеханический колледж

Письменная экзаменационная работа

Схемы выпрямления

2010

Введение

Основные направления экономического и социального развития предусматривают интенсивное развитие автоматизации и роботизации всего народного хозяйства страны, повышение энерговооруженности труда.

Решение этих задач непосредственно связано с совершенствованием электрооборудования промышленных установок, со степенью автоматизации технологических линий и участков производства, с качеством обслуживания, от которого зависят бесперебойность и ритмичная работа предприятия.

Политика нашей страны направлена на то, чтобы совершенствовать систему образования с учётом потребностей ускорения социально-экономического развития, требований выдвигаемых прогрессом науки и техники.

Чтобы обслуживать электрооборудование, соответствующее современному уровню развития науки и техники, электромонтёр должен обладать знаниями по устройству электрических двигателей, аппаратов защиты и управления, иметь представление об особенностях работы полупроводниковой техники и устройств автоматики, уметь разбираться в системах электрооборудования технологических установок и устройств и т.д. Цель выпускной квалификационной работы – овладеть необходимым комплексом знаний в области монтажа и обслуживания преобразовательной полупроводниковой техники.


1. Полупроводниковые схемы выпрямления на диодах

1.1 Понятие полупроводникового выпрямителя

Выпрямитель электрического тока — механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры.

1.2 Полупроводниковый диод

Рисунок 1.2.1 - Вольтамперная характеристика диода

Полупроводниковые диоды работают на принципе односторонней электропроводимости и имеют один электрический переход и два вывода. Вольтамперная характеристика диода (рисунок 1.2.1.) показывает зависимость проходящего через него тока от приложенного напряжения.

Если к анодному выводу приложен положительный потенциал, то сопротивление электрического перехода мало и ток проходящий через прибор, ограничивается только сопротивлением нагрузки RH. Падение напряжения на диоде при прохождении номинального тока составляет 0,5-1В.

Если к анодному выводу приложен отрицательный потенциал, то диод имеет большое сопротивление и через прибор проходит обратный ток составляющей десятые доли ампера, т.е. можно считать, что ток в обратном Если обратное приложенное напряжение превышает номинально допустимое то диод выходит из строя.

1.3 Применение схем выпрямления

1) выпрямление электрического тока; 2) блоки питания аппаратуры; 3) выпрямители электросиловых установок; 4) сварочные аппараты;

1.4 Выпрямление электрического тока

Выпрямители обычно используются там, где нужно преобразовать переменный ток в постоянный ток.

1.5 Блоки питания аппаратуры

1) блоки питания промышленной и бытовой радио- и электроаппаратуры (в т.ч.,так называемые, адаптеры);

2) блоки питания бортовой радиоэлектронной аппаратуры транспортных средств.

1.6 Выпрямители электросиловых установок

1) выпрямители питания главных двигателей постоянного тока автономных транспортных средств и буровых установок;

2) преобразователи бортового электроснабжения постоянного тока автономных транспортных средств: автотракторной, железнодорожной, водной, авиационной и другой техники.

1.7 Сварочные аппараты

В сварочных аппаратах постоянного тока применяются чаще всего мостовые схемы на мощных кремниевых выпрямительных диодах — вентилях (клапанах), с целью получения постоянного сварочного напряжения и тока. Он отличается от переменного тем, что при использовании его сильнее нагревается область дуги около положительного (+) её полюса, что позволяет либо осуществлять щадящую сварку свариваемых деталей преимущественно плавящимся сварочным электродом, либо экономить электроды, осуществляя резку металла электродуговой сваркой.

1.8 Однофазная мостовая схема

Схема состоит из 4-х диодов V1-V4, соединенных по схеме моста и подключенных к сети переменного тока через трансформатор или напрямую. Трансформатор позволяет согласовать напряжение сети и выпрямленное напряжение нагрузки. В одну диагональ моста (точки 1 и 3) включен источник переменного напряжения, а в другую(точки 2 и 4) – нагрузка RH.

Диоды работают поочерёдно парами V1,V3 и V2,V4. В положительный полупериод напряжения U2ф потенциал точки 1 положителен, а точки 3-отрицателен. Диоды V1 и V3 включены в прямом направлении, а V2 и V4- в обратном. Ток от положительного зажима вторичной обмотки трансформатора проходит через диод V1, нагрузку к открытому диоду V3 и к отрицательному зажиму вторичной обмотки трансформатора.

В отрицательный полупериод (полярность напряжения указана в скобках) диоды V2 и V4 проводят ток, а V1и V3 закрыты. Ток от положительного зажима проходит через диод V2 и нагрузку к открытому диоду V4 и к отрицательному зажиму вторичной обмотки трансформатора. Таким образом, ток в цепи нагрузки каждый период проходит в одном направлении.

1.9 Недостатки однофазной мостовой схемы

Однофазные мостовые схемы из-за больших пульсаций выпрямленного напряжения применяют в электроустановках малой мощности.

1.10 Трехфазная нулевая схема

Схема состоит из 3-х диодов и трансформатора, первичная обмотка

которого соединена в звезду или треугольник, а вторичная - в звезду. Анодные выводы диодов подключают к обмоткам трансформатора, а катодные к общей точке. Нагрузку включают между нулевой точкой трансформатора и общей точкой диодов.

При активной нагрузке Rн ток через каждый диод протекает в течение 1/3 периода частоты сети, когда напряжение в одной фазе трансформатора больше чем в двух других, а выпрямленный ток проходит по нагрузке непрерывно. В момент пересечения положительных значений напряжений каждой фазы трансформатора в точках а, б и в, называемых точками естественной коммутации диодов, ток прекращает проходить в одном диоде и начинает протекать через другой.

1.11 Достоинства и недостатки трехфазной нулевой схемы

Схема позволяет получать выпрямленное напряжение более сглаженной формы, чем однофазная мостовая.

Недостаток- прохождение тока через вторичные обмотки только в одном направлении, что создаёт магнитный поток подмагничивания, вызывающий дополнительный нагрев трансформатора.

Поэтому схему широко применяют только в выпрямительных установках с трансформаторами, ток вторичной обмотки которых не превышает 100 ампер.

1.12 Трёхфазная мостовая схема


Схема состоит из 6 диодов, которые образуют 2группы: с общим катодным выводом(V1,V3 и V5) и общим анодным выводом(V2,V4 и V6). В нечётной группе (V1,V3 и V5) диоды в течении каждой трети периода работают с наиболее высоким потенциалом анодного вывода.

В чётной группе (V2,V4 и V6) в этот период времени работает тот диод у которого катодный вывод имеет наиболее отрицательный потенциал (интервал а-г для диода V6 и г-б для диодаV2) по отношению к общей точке анодных выводов.

Таким образом в интервале а-г ток проходит от фазы а трансформатора через диод V1, нагрузку Rн, диод V6 к фазе б трансформатора. В интервале г-б ток проходит через диод V1 нагрузку Rн, и диод V2.

В схеме в любой момент времени при активной нагрузке ток проходит через 2 диода, один из нечётной, а другой - из чётной группы. Диоды нечётной группы коммутируются в момент пересечения положительных участков синусоид(а, б, в) а чётные группы – в момент пересечения отрицательных участков(г, д, е).

1.13 Достоинства и недостатки трёхфазной мостовой схемы

Небольшой коэффициент пульсации выпрямленного напряжения.

Отсутствие дополнительного нагрева.


Таблица

Схема выпрямления Число фаз выпрямления m Коэффициент пульсаций выпрямленного напряжения
Однофазная мостовая Трёхфазная нулевая Трёхфазная мостовая 2 3 6 0,67 0,25 0,057

2. Полупроводниковые схемы выпрямления на тиристорах

2.1 Понятие полупроводникового тиристора

Полупроводниковые тиристоры имеют три электрода (катодный, анодный и управляющий электрод) и обладают двумя устойчивыми состояниями: открытым (проводящим ток) и закрытыми (непроводящим ток).

2.2 Полупроводниковый тиристор

Ток через тиристор начинает проходить, когда к анодному выводу приложен положительный потенциал и подан положительный по отношению к катодному выводу управляющий сигнал. По внешнему виду тиристор напоминает диод, но в отличие от него имеет дополнительный управляющий электрод.

Представляющая собой зависимость проходящего тока от приложенного напряжения. Обратная ветвь характеристики тиристора (при подаче на анодный вывод отрицательного напряжения) не отличается от характеристики полупроводникового диода. При положительном потенциале на анодном выводе сопротивление тиристора зависит от управляющего тока. При отсутствии управляющего сигнала сопротивление тиристора велико, что соответствует участку низкой электропроводности характеристики. Ток управления переводит тиристор в открытое состояние при прямом напряжении. При прохождении через управляющий электрод номинального тока участок низкой проводимости практически отсутствует, и в прямом направлении характеристика тоже такая же, как у диода.