регистрация /  вход

Разработка цифрового блока управления (стр. 1 из 2)

Содержание

Условие

1 Функциональная схема ЦБУ

2 Принцип действия

3 Импульсный датчик

4 Формирователь импульсов

5 Счетчик импульсов

6 Командные триггеры

7 Импульсные усилители мощности

Список используемой литературы


Условие

Объект разработки

Разработать цифровой блок управления (ЦБУ), резьбонарезным шпинделем обеспечивающим автоматически заданное количество оборотов метчика при прямом и обратном ходе, реверсирование и останов шпинделя. Пуск шпинделя должен осуществляться кнопкой или внешним импульсным сигналом. Приводом шпинделя является реверсивный двигателем постоянного тока последовательным возбуждением и двухсекционной обработкой (серии СЛ).

ЦБУ должен содержать фотоэлектрический импульсный датчик, формирователь импульсов, счетчик импульсов с предустановкой, командный триггер и импульсный усилитель мощности.

Исходные данные (Вариант № 33):

1. Элементная база – КМОП

2. Количество оборотов:

прямой ход kп =5+n=5+3=8;

обратный ход kо =6+n=6+3=9;

3. Относительный световой ток фотодиода

где IC - световой ток, IT - темновой ток

4. Напряжение питания электродвигателя UЭД =110 В

5. Ток электродвигателя IЭД =0,2*(n+1)=0.2*(3+1)=0.8 А

1 Функциональная схема ЦБУ

Рисунок 1 - Функциональная схема

На рисунке 1 изображена функциональная схема, в состав которой входят:

ФИД - фотоэлектрический импульсный датчик. Датчик представляет собой оптрон, преобразующий поток излучения светодиода в импульсы тока фотодиода за счет периодического прерывания потока излучения вращающимся щелевым диском, установленным на выходном валу шпинделя.

Светодиод выбирается с ИК-спектром излучения для уменьшения влияния окружающего светового фона.

ФИ - формирователь импульсов. Формирователь импульсов выполняется на триггере Шмитта, в виде интегральной микросхемы и должен быть согласован по входному сопротивлению с фотоэлектрическим датчиком. На статистической характеристике формирователя Uвых =f(Uвх) необходимо определить уровни его срабатывания (Uср) и отпускания (Uот), а также уровни светового (Uс) и темнового (Uт) напряжений датчика.

СИ- счетчик импульсов. Счетчик обеспечивает подсчёт числа импульсов датчика, сформированных компаратором, и выдает на командный триггер сигнал после поступления заданного числа импульсов. Он может выполняться на одной или двух интегральных микросхемах.

КТ - командные триггеры ТПХ и ТОХ выполняются по схеме асинхронных RS- триггеров на ЛЭ «ИЛИ-НЕ» или «И-НЕ». ТПХ должен иметь два входа «Пуск» для кнопки ручного управления (РУ) и внешнего управления (ВУ). В схеме ЦБУ необходимо предусмотреть цепи «обнуления» командных триггеров и счетчика импульсов при включении напряжения питания.

ИУМ - импульсный усилитель мощности. Импульсный усилитель мощности выполняется на силовых транзисторах, работающих в ключевом режиме. Тип каждого транзистора выбирается по заданным значения напряжения и тока электродвигателя, а так же необходимому значению коэффициента передачи ß, определяемому по максимально возможному выходному току триггеров Iвых≤2мА.

ЛЭ - логические элементы. Они как вспомогательные устройства выбираются с минимальным количеством корпусов ИС и могут совмещаться по выполняемым функциям с триггером Шмита.

Р – редуктор, предназначен для уменьшения скорости вращения и увеличения крутящего момента.

2 Принцип действия

До начала работы требуется обнулить командные триггеры ТПХ и ТОХ. Далее, после подачи команды «пуск» от РУ или ВУ, командный триггер ТПХ переходит в состояние логической единицы.

Через импульсный усилитель мощности этот сигнал подается на электродвигатель. ЭД начинает вращаться, в прямом направлении. Импульсный датчик количества оборотов приводного вала начинает вырабатывать импульсы тока в соответствии с количеством оборотов.

Формирователь импульсов увеличивает крутизну фронта и среза импульсов датчика, обеспечивая требуемые сигналы на входе счетчика импульсов.

СИ считает количество импульсов. При подаче 8-го импульса ТПХ и 1-ый счётчик обнуляются, переключая триггер ТОХ в единичное состояние. При счете 15-го импульса вырабатывается сигнал, который обнуляет командный триггер ТОХ в логический ноль и сбрасывает 2-ой счетчик. Двигатель останавливается.

Для реализации устройства используем ИС серий К1554 и К1561.

Параметры ИС серии К1554:

Uп min , В 2

Uп max , В 6

При Uп = 5,0 В±10%:

U1 вх min , В 3,15 - 3,85

U0 вх max , В 1,35 – 1,65

Iвых max , мА 24

Параметры ИС серии К1561:

Uп min , В 3

Uп max , В 18

При Uп = 5,0 В±10%:

U1 вх , В 4,95

U0 вх , В 0,05

Iвых max , мА 24

Рассмотрим каждый элемент функциональной схемы.


3 Импульсный датчик

Импульсный датчик изготавливается из излучателя и фотоприемника. Их располагают по обе стороны диска, установленного на валу редуктора. Диск имеет одно отверстие.

В качестве излучателя используем инфракрасный светодиод минимального габарита и максимальной мощности VD1 АЛ107Б с параметрами : Uпр.макс =1.85 В Iпр.макс =100 мА РЕ = 9 мВт lМИН =940 нм lМАКС =965 нм

Рисунок 2 - Схема принципиальная фотоэлектрического импульсного датчика.

цифровой блок управление датчик

ИК спектр излучения дает возможность совместно с ИК светофильтром на фотоприемнике исключить влияние фоновой засветки на выходной сигнал ФИД.

Резистор R1 задает номинальный ток

IПР.НОМ. =0,15*IПР.МАКС. =15 (мА)

Такой выбор позволит увеличить срок службы излучателя, а также обеспечить необходимый уровень потока излучения.

При Uп =5 В

Выберем R1 из стандартного ряда Е24:

R1 =220 Ом ±5% тип МЛТ 0.25

В качестве фотоприемника выбираем кремниевый фотодиод КДФ111Г2, который имеет сравнительно небольшой темновой ток Iт =1 мкА и большую термостабильность.

Определим Ic =18*Iт = 18 мкА.

Выбор R2 обуславливается необходимым выходным сигналом датчика. Так как элементная база КМОП, то для получения необходимого уровня логической единицы требуется напряжение примнрно 3,5 В

Следовательно:

U1 ФИД.ВЫХ =U1 ФИ.ВХ = 3,5 В

Выберем R2 из стандартного ряда Е24:

R2 = 200 КОм ±5% тип МЛТ 0.25

Учтем, что излучатель и приемник надо жестко, соосно зафиксировать. Ширина же диска нам не известна. Вынесем светодиод и фотодиод за пределы печатной платы, оставив лишь резисторы R1 и R2. Для этого сделаем на монтажной схеме 2 входа: VD1, VD2.

Определим выходные сигналы ФИД:

1. Темновой сигнал: Uт=Iт·R2 =1·10-6 ·200·103 =0,2 В

2. Световой сигнал: Uc =Ic ·R2 =18·10-6 ·200·103 =3,6 В

4. Формировательимпульсов

Формирователь импульсов можно изготовить на основе триггера Шмитта, который имеет пороги срабатывания и отпускания, между которыми существует зона гистерезиса 2,6 В.

Таким образом, передаточная (статическая) характеристика элемента Шмитта двухпороговая. Она показана на рисунке 3.

Рисунок 3

Выбираем микросхему К1561ТЛ1, в корпусе которой содержится четыре двухвыводных элемента «И-НЕ». Так как в формирователе импульсов используем только один, три других можно применять, как обычный логический элемент.

Для нормальной работы ФИ, должно выполняться 2 условия:

В данном случае

Следовательно, условия выполняются:

Рисунок 4 Схема формирователя импульсов.

5. Счетчик импульсов

Для построения счетчика импульсов используем режим обратного счета с предварительной записью. Используем 4-х разрядный реверсивный двоичный счетчик с асинхронной предустановкой, с асинхронным сбросом и разделенными тактовыми входами - К1554ИЕ7. Используем 2-а таких счетчика(т.е. один для прямого, другой для обратного счета хода метчика).

Диапазон начальных значений Кп и Ко отображен в следующей таблице:

Номер счётчика КД (10) КД (2) (записываемое в счетчик число)
D0 D1 D2 D3
DD1 8 1 0 0 0
DD2 6 0 1 1 0

Подавая импульс кнопкой SB1, записываем число 8 в счетчик DD1 и начинаем обратный счет. При счете ≤0 импульс, сигналом с выхода займа, обнуляем командный триггер ТПХ, устанавливаем логическую единицу на триггере ТОХ, а так же подаем разрешающий сигнал на запись 8 во второй счетчик DD2. Второй счетчик работает в режиме прямого счета. При счете ≥15 импульса сигнал с выхода переноса счетчика обнуляет ТОХ и счетчик DD2


6. Командные триггеры

В начальный момент времени для стабильной работы ЦБУ необходимо обнулить командные триггеры:

Рисунок 5 – Схема формирования сигнала сброса.

Для ЛЭ серий К1554 и К1561

Время задержки приблизительно равно Τ=3,5 нс на вентиль, таким образом для гарантированного сброса все микросхем T= 20 мс.

Выберем R4 из стандартного ряда Е24: